poj 3074 Sudoku(Dancing Links)

poj 3074 Sudoku(Dancing Links)

大家好,又见面了,我是全栈君,今天给大家准备了Idea注册码。

Sudoku
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 8152   Accepted: 2862

Description

In the game of Sudoku, you are given a large 9 × 9 grid divided into smaller 3 × 3 subgrids. For example,

. 2 7 3 8 . . 1 .
. 1 . . . 6 7 3 5
. . . . . . . 2 9
3 . 5 6 9 2 . 8 .
. . . . . . . . .
. 6 . 1 7 4 5 . 3
6 4 . . . . . . .
9 5 1 8 . . . 7 .
. 8 . . 6 5 3 4 .

Given some of the numbers in the grid, your goal is to determine the remaining numbers such that the numbers 1 through 9 appear exactly once in (1) each of nine 3 × 3 subgrids, (2) each of the nine rows, and (3) each of the nine columns.

Input

The input test file will contain multiple cases. Each test case consists of a single line containing 81 characters, which represent the 81 squares of the Sudoku grid, given one row at a time. Each character is either a digit (from 1 to 9) or a period (used to indicate an unfilled square). You may assume that each puzzle in the input will have exactly one solution. The end-of-file is denoted by a single line containing the word “end”.

Output

For each test case, print a line representing the completed Sudoku puzzle.

Sample Input

.2738..1..1...6735.......293.5692.8...........6.1745.364.......9518...7..8..6534.
......52..8.4......3...9...5.1...6..2..7........3.....6...1..........7.4.......3.
end

Sample Output

527389416819426735436751829375692184194538267268174593643217958951843672782965341
416837529982465371735129468571298643293746185864351297647913852359682714128574936

Source

题意

就是经典的数独问题。

思路:

搜索。

可是得借助Dancing Links加速。关键就在于如何把数独问题抽象成一个精确覆盖问题了。

我们首先考虑数独的游戏规则。

1.每一个格子都必须填一个数字。

2.每一行1-9这几个数字都必须出现一次。

3.每一列1-9这几个数字都必须出现一次。

4.每一宫格1-9这几个数字都必须出现一次。

我们知道Dancing Links的精确覆盖智能处理0,1的序列覆盖每一列为一个约束条件。

那么我们就必须把上述约束转换成0,1矩阵。

对于1。

我们用第(i-1)*9+j列为1表示i行j列的已经填数。一共占用81列。

对于2.我们用81+(i-1)*9+v列表示第i行已经有v这个值。一共占用81列。

对于3.我们用162+(j-1)*9+v列表示第j列已经有v这个值。一共占用81列。

对于3.我们用243+(3*((i-1)/3)+(j+2)/3-1)+v列表示第3*((i-1)/3)+(j+2)/3宫格已经有v这个值。一共占用81列。

ps:i,j都从1開始。3*((i-1)/3)+(j+2)/3为通过i,j确定的宫格数。

这样就会为每一个宫格确定一个01序列约束。

然后建好矩阵后。

套上精确覆盖模板后就ok了。

具体见代码:

#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
const int INF=0x3f3f3f3f;const int maxn=3645;//每一个格子可能有9个取值。

所以最多有81*9行。然后243列。

int U[maxn],D[maxn],L[maxn],R[maxn],C[maxn],row[maxn];//上下左右指针。c[i]结点i相应的列。row[i]结点i相应的行号。

int S[350],H[800],ans[100];//S[i]为i列1的个数。

H[i]为i行的尾指针。

int n,m,cnt,deep;struct node{ int x,y,v;} st[maxn];char maze[150],path[150];void init(){ int i; for(i=1;i<=800;i++) H[i]=-1; for(i=0;i<=324;i++) { S[i]=0; L[i+1]=i; R[i]=i+1; U[i]=D[i]=i; } R[324]=deep=0; cnt=325;}void Insert(int r,int c){ //头插法建链表 U[cnt]=c,D[cnt]=D[c];//确定新增结点上下指针信息 U[D[c]]=cnt,D[c]=cnt;//恢复链表信息 if(H[r]==-1) //确定左右指针信息 H[r]=L[cnt]=R[cnt]=cnt;//增加头 else { L[cnt]=H[r],R[cnt]=R[H[r]];//头插法 L[R[H[r]]]=cnt,R[H[r]]=cnt; } S[c]++;//更新附加信息 row[cnt]=r; C[cnt++]=c;}void Remove(int c)//移除c列。{ int i,j; R[L[c]]=R[c],L[R[c]]=L[c]; for(i=D[c];i!=c;i=D[i]) for(j=R[i];j!=i;j=R[j]) D[U[j]]=D[j],U[D[j]]=U[j],S[C[j]]--;}void Resume(int c)//还原c列。{ int i,j; R[L[c]]=L[R[c]]=c; for(i=D[c];i!=c;i=D[i]) for(j=R[i];j!=i;j=R[j]) D[U[j]]=U[D[j]]=j,S[C[j]]++;}bool dfs(){ if(R[0]==0) return true; int i,j,c,miv=INF; for(i=R[0];i;i=R[i]) if(S[i]<miv) miv=S[i],c=i; Remove(c);//处理第c列 for(i=D[c];i!=c;i=D[i]) { for(j=R[i];j!=i;j=R[j]) Remove(C[j]); ans[deep++]=row[i]; if(dfs()) return true; for(j=L[i];j!=i;j=L[j]) Resume(C[j]); deep--; } Resume(c); return false;}int main(){ int i,j,v,r,p; while(gets(maze)) { if(maze[0]=='e') break; init(); r=1; for(i=1;i<=9;i++)//每行为一个格子的一种选择。

{ for(j=1;j<=9;j++) { if(maze[(i-1)*9+j-1]=='.') { for(v=1;v<=9;v++) { Insert(r,(i-1)*9+j); Insert(r,81+(i-1)*9+v); Insert(r,162+(j-1)*9+v); Insert(r,243+(((i-1)/3)*3+(j+2)/3-1)*9+v); st[r].x=i,st[r].y=j,st[r].v=v; r++; } } else { v=maze[(i-1)*9+j-1]-'0'; Insert(r,(i-1)*9+j); Insert(r,81+(i-1)*9+v); Insert(r,162+(j-1)*9+v); Insert(r,243+(((i-1)/3)*3+(j+2)/3-1)*9+v); st[r].x=i,st[r].y=j,st[r].v=v; r++; } } } dfs(); for(i=0;i<deep;i++) { p=ans[i]; path[(st[p].x-1)*9+st[p].y-1]='0'+st[p].v; } path[deep]=0; printf("%s\n",path); } return 0;}

版权声明:本文博主原创文章。博客,未经同意不得转载。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/116883.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • linux双网卡架设FTP,LINUX系统上架设FTP服务器[通俗易懂]

    linux双网卡架设FTP,LINUX系统上架设FTP服务器[通俗易懂]CentOS上搭建FTP服务器服务器软件:vsftpd简要说明:vsftpd是linux下的一款小巧轻快,安全易用的FTP服务器软件,是一款在各个LINUX发行版中最受推崇的FTP服务器软件。至于它的安装教程,网络上也是数不胜数,每个教程都有各自的优缺点,祥哥特意做了个总结,取别人之长处,尽量做到菜鸟级别的教程。当你看见祥哥的这篇文章,能更好的使用和运用VSFTPD。下面正题开始。安装vsftpd…

    2022年7月21日
    9
  • Mongodb数据库命令端经常使用操作

    Mongodb数据库命令端经常使用操作

    2021年12月4日
    45
  • 使用idea打war包[通俗易懂]

    使用idea打war包[通俗易懂]1.将整个maven工程先下载一下2.在子工程下选择package3.去工作空间找到自己的项目然后进入target就可以看到war包。4.可以使用压缩软件打开看看打包是否正确。…

    2022年10月26日
    0
  • 前向传播算法(Forward propagation)与反向传播算法(Back propagation)「建议收藏」

    前向传播算法(Forward propagation)与反向传播算法(Back propagation)「建议收藏」虽然学深度学习有一段时间了,但是对于一些算法的具体实现还是模糊不清,用了很久也不是很了解。因此特意先对深度学习中的相关基础概念做一下总结。先看看前向传播算法(Forwardpropagation)与反向传播算法(Backpropagation)。1.前向传播如图所示,这里讲得已经很清楚了,前向传播的思想比较简单。举个例子,假设上一层结点i,j,k,…等一些结点与本层的结点w有连接,那么结点

    2022年4月28日
    45
  • 两类交换元素使序列有序 求最少交换次数的题

    两类交换元素使序列有序 求最少交换次数的题

    2022年4月3日
    34
  • SIGPIPE信号的产生及处理

    SIGPIPE信号的产生及处理SIGPIPE信号的产生在tcp四次挥手过程中,发送方向已经调用close()方法的socket一端写数据,会产生sigpipe错误。close():关闭读写两个方向,会导致sigpipe信号shutdown():可以选择关闭读/写方向,不会导致sigpipe信号SIGPIPE信号的解决方法直接忽略sigpipe信号voidhandle_for_sigpipe(){str…

    2022年7月17日
    16

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号