HDU 1085-Holding Bin-Laden Captive!(生成功能)

HDU 1085-Holding Bin-Laden Captive!(生成功能)

大家好,又见面了,我是全栈君,今天给大家准备了Idea注册码。

Holding Bin-Laden Captive!

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 15384    Accepted Submission(s): 6892




Problem Description
We all know that Bin-Laden is a notorious terrorist, and he has disappeared for a long time. But recently, it is reported that he hides in Hang Zhou of China! 

“Oh, God! How terrible! ”


HDU 1085-Holding Bin-Laden Captive!(生成功能)

Don’t be so afraid, guys. Although he hides in a cave of Hang Zhou, he dares not to go out. Laden is so bored recent years that he fling himself into some math problems, and he said that if anyone can solve his problem, he will give himself up! 

Ha-ha! Obviously, Laden is too proud of his intelligence! But, what is his problem?

“Given some Chinese Coins (硬币) (three kinds– 1, 2, 5), and their number is num_1, num_2 and num_5 respectively, please output the minimum value that you cannot pay with given coins.”
You, super ACMer, should solve the problem easily, and don’t forget to take $25000000 from Bush!

 


Input
Input contains multiple test cases. Each test case contains 3 positive integers num_1, num_2 and num_5 (0<=num_i<=1000). A test case containing 0 0 0 terminates the input and this test case is not to be processed.

 


Output
Output the minimum positive value that one cannot pay with given coins, one line for one case.

 


Sample Input
   
   
1 1 3 0 0 0

 


Sample Output
   
   
4
仍旧是母函数水过。
题意:有3种面值的硬币{1,2,5} 如今给出这3种硬币的个数,求最小不能组成的面值。

暴力生成 a[]数组扫一遍第一个为0的就是最小不能组成的面值
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cctype>
#include <cmath>
#include <cstdlib>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <list>
#define maxn 100100
#define ll long long
#define INF 0x3f3f3f3f
#define pp pair<int,int>
using namespace std;
int a[maxn],b[maxn],v[3]={1,2,5},p,n[3];
void solve()
{
	p=n[0]+n[1]*2+n[2]*5;
	memset(a,0,sizeof(a));
	a[0]=1;
	for(int i=0;i<3;i++)
	{
		memset(b,0,sizeof(b));
		for(int j=0;j<=n[i]&&j*v[i]<=p;j++)
			for(int k=0;k+j*v[i]<=p;k++)
			b[k+j*v[i]]+=a[k];
		memcpy(a,b,sizeof(b));
	}
	int ans;
	for(ans=0;ans<=p;++ans)
		if(a[ans]==0)break;
	printf("%d\n",ans);
}
int main()
{
	while(~scanf("%d%d%d",&n[0],&n[1],&n[2]))
	{
		if(!n[0]&&!n[1]&&!n[2])break;
		solve();
	}
	return 0;
}

版权声明:本文博主原创文章,博客,未经同意不得转载。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/116966.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号