MapReduce 规划 六系列 MultipleOutputs采用

MapReduce 规划 六系列 MultipleOutputs采用

大家好,又见面了,我是全栈君,今天给大家准备了Idea注册码。

在前面的示例,输出文件名是默认:

_logs         part-r-00001  part-r-00003  part-r-00005  part-r-00007  part-r-00009  part-r-00011  part-r-00013  _SUCCESS
part-r-00000  part-r-00002  part-r-00004  part-r-00006  part-r-00008  part-r-00010  part-r-00012  part-r-00014

part-r-0000N

另一个_SUCCESS文件标志job执行成功。

另一个文件夹_logs。

可是实际情况中,我们有时候须要依据情况定制我的输出文件名称。

比方我要依据did的值分组,产生不同的输出文件。全部did出现次数在[0, 2)的都输出到a文件里。在[2, 4)的输出大b文件。其它输出到c文件。

这里涉及到的输出类是MultipleOutputs类。

以下是介绍怎样实现。

首先有一个小优化,为了避免每次执行时输入一长串命令,利用maven exec plugin,參考pom.xml配置例如以下:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
  <modelVersion>4.0.0</modelVersion>
  <groupId>org.freebird</groupId>
  <artifactId>mr1_example2</artifactId>
  <packaging>jar</packaging>
  <version>1.0-SNAPSHOT</version>
  <name>mr1_example2</name>
  <url>http://maven.apache.org</url>
  <dependencies>
    <dependency>
      <groupId>org.apache.hadoop</groupId>
      <artifactId>hadoop-core</artifactId>
      <version>1.2.1</version>
    </dependency>
  </dependencies>
  <build>
    <plugins>
      <plugin>
        <groupId>org.codehaus.mojo</groupId>
        <artifactId>exec-maven-plugin</artifactId>
        <version>1.3.2</version>
        <executions>
          <execution>
            <goals>
              <goal>exec</goal>
            </goals>
          </execution>
        </executions>
        <configuration>
          <executable>hadoop</executable>
          <arguments>
            <argument>jar</argument>
            <argument>target/mr1_example2-1.0-SNAPSHOT.jar</argument>
            <argument>org.freebird.LogJob</argument>
            <argument>/user/chenshu/share/logs</argument>
            <argument>/user/chenshu/share/output12</argument>
          </arguments>
        </configuration>
      </plugin>
    </plugins>
  </build>
</project>

这样每次mvn clean package之后,执行mvn exec:exec命令就可以。

然后在LogJob.java文件加入几行代码:

package org.freebird;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.freebird.reducer.LogReducer;
import org.freebird.mapper.LogMapper;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;



public class LogJob {                                                                                                                                                                                                
                                                                                                                                                                                                                     
    public static void main(String[] args) throws Exception {                                                                                                                                                        
        System.out.println("args[0]:" + args[0]);                                                                                                                                                                    
        System.out.println("args[1]:" + args[1]);                                                                                                                                                                    
                                                                                                                                                                                                                     
        Configuration conf = new Configuration();                                                                                                                                                                    
        Job job = new Job(conf, "sum_did_from_log_file");                                                                                                                                                            
        job.setJarByClass(LogJob.class);                                                                                                                                                                             
                                                                                                                                                                                                                     
        job.setMapperClass(org.freebird.mapper.LogMapper.class);                                                                                                                                                     
        job.setReducerClass(org.freebird.reducer.LogReducer.class);                                                                                                                                                  
                                                                                                                                                                                                                     
        job.setOutputKeyClass(Text.class);                                                                                                                                                                           
        job.setOutputValueClass(IntWritable.class);                                                                                                                                                                  
                                                                                                                                                                                                                     
        MultipleOutputs.addNamedOutput(job, "a", TextOutputFormat.class, Text.class, IntWritable.class);                                                                                                             
        MultipleOutputs.addNamedOutput(job, "b", TextOutputFormat.class, Text.class, Text.class);                                                                                                                    
        MultipleOutputs.addNamedOutput(job, "c", TextOutputFormat.class, Text.class, Text.class);                                                                                                                    
                                                                                                                                                                                                                     
        FileInputFormat.addInputPath(job, new Path(args[0]));                                                                                                                                                        
        FileOutputFormat.setOutputPath(job, new Path(args[1]));                                                                                                                                                      
                                                                                                                                                                                                                     
        System.exit(job.waitForCompletion(true) ? 0 : 1);                                                                                                                                                            
    }                                                                                                                                                                                                                
}

MultipleOutputs.addNamedOutput 函数被调用了三次,设置了文件名称为a,b和c。最后两个參数各自是output key和output value类型。应该和job.setOutputKeyClass以及job.setOutputValueClass保持一致。

最后改动reducer类的代码:

public class LogReducer extends Reducer<Text, IntWritable, Text, IntWritable> {

    private IntWritable result = new IntWritable();

    private MultipleOutputs outputs;

    @Override
    public void setup(Context context) throws IOException, InterruptedException {
        System.out.println("enter LogReducer:::setup method");
        outputs = new MultipleOutputs(context);
    }

    @Override
    public void cleanup(Context context) throws IOException, InterruptedException {
        System.out.println("enter LogReducer:::cleanup method");
        outputs.close();
    }

    public void reduce(Text key, Iterable<IntWritable> values,
                       Context context) throws IOException, InterruptedException {
        System.out.println("enter LogReducer::reduce method");
        int sum = 0;
        for (IntWritable val : values) {
            sum += val.get();
        }
        result.set(sum);
        System.out.println("key: " + key.toString() + " sum: " + sum);                                                                                             
        if ((sum < 2) && (sum >= 0)) {
            outputs.write("a", key, sum);
        } else if (sum < 4) {
            outputs.write("b", key, sum);
        } else {
            outputs.write("c", key, sum);
        }
    }
}

依据同样key(did)sum的结果大小,写入到不同的文件里。执行后观察一下结果:

[chenshu@hadoopMaster output12]$ ls
a-r-00000  a-r-00004  a-r-00008  a-r-00012  b-r-00001  b-r-00005  b-r-00009  b-r-00013  c-r-00002  c-r-00006  c-r-00010  c-r-00014     part-r-00002  part-r-00006  part-r-00010  part-r-00014
a-r-00001  a-r-00005  a-r-00009  a-r-00013  b-r-00002  b-r-00006  b-r-00010  b-r-00014  c-r-00003  c-r-00007  c-r-00011  _logs         part-r-00003  part-r-00007  part-r-00011  _SUCCESS
a-r-00002  a-r-00006  a-r-00010  a-r-00014  b-r-00003  b-r-00007  b-r-00011  c-r-00000  c-r-00004  c-r-00008  c-r-00012  part-r-00000  part-r-00004  part-r-00008  part-r-00012
a-r-00003  a-r-00007  a-r-00011  b-r-00000  b-r-00004  b-r-00008  b-r-00012  c-r-00001  c-r-00005  c-r-00009  c-r-00013  part-r-00001  part-r-00005  part-r-00009  part-r-00013

打开随意的a,b和c开头的文件,查看值果然是如此

5371700bc7b2231db03afeb0        6
5371700cc7b2231db03afec0        7
5371701cc7b2231db03aff8d        6
5371709dc7b2231db03b0136        6
537170a0c7b2231db03b01ac        6
537170a6c7b2231db03b01fc        6
537170a8c7b2231db03b0217        6
537170b3c7b2231db03b0268        6
53719aa9c7b2231db03b0721        6
53719ad0c7b2231db03b0731        4

使用MultipleOutputs依据sum值对设备ID进行分组成功了。

MapReduce仍然会默认生使part….档,不要紧,它们是空文件。

版权声明:本文博主原创文章,博客,未经同意不得转载。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/116998.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • plc学习经验及摘录

    plc学习经验及摘录如题

    2022年10月10日
    4
  • k8s实战系列: 1-再谈为什么需要Kubernetes[通俗易懂]

    k8s实战系列: 1-再谈为什么需要Kubernetes[通俗易懂]k8s系列:再谈为什么需要Kubernetes容器解决了什么?又遇到了什么问题容器,到底是怎么一回事儿?在Docker出现之前,最为流行的是PaaS项目。PaaS项目被大家接纳的一个主要原因,就是它提供了一种名叫“应用托管”的能力。像CloudFoundry这样的PaaS项目,最核心的组件就是一套应用的打包和分发机制。更好地模拟本地服务器环境,能带来更好的“上云”体验。CloudFoundry会调用操作系统的Cgroups和Namespace机制为每一个应用单独创建一

    2022年5月21日
    39
  • angular框架如何实现父子组件传值、非父子组件传值

    angular框架如何实现父子组件传值、非父子组件传值文章目录1.理解父子组件、非父子组件2.父组件给子组件传值–@input3.父组件通过@ViewChild主动获取子组件的数据和方法4.非父子组件如何传递数据1.理解父子组件、非父子组件什么是父子组件?组件的父子关系是相对来说的,即在一个A组件中嵌入了B组件,那么在这一层关系中,A组件是B组件的父组件,B组件是A组件的子组件。看下面两幅图即可理解:app.component.html与普通组件的关系:普通组件与普通组件:现在应该知道父子组件是什么关系了,关键看谁嵌入了谁那里。父子组件

    2022年5月13日
    44
  • Django(18)聚合函数

    Django(18)聚合函数前言orm模型中的聚合函数跟MySQL中的聚合函数作用是一致的,也有像Sum、Avg、Count、Max、Min,接下来我们逐个介绍聚合函数所有的聚合函数都是放在django.db.models

    2022年7月28日
    4
  • 分区容错性和可用性的区别

    分区容错性和可用性的区别分区容错性:因为网络等硬件引起的问题,一台服务器崩溃了,保证能在其他服务器上也能顺利完成业务。可用性:因为软件代码层面的问题,一台服务器上的服务崩溃了,保证能在其他服务器上完成该业务。区别:分区容错性更偏向于硬件引起的问题可用性更偏向于软件代码层面的问题…

    2022年7月25日
    26
  • c语言socket编程流程,C语言socket编程简单步骤「建议收藏」

    c语言socket编程流程,C语言socket编程简单步骤「建议收藏」服务器端/***************************************函数功能:创建套接字的函数*输入参数:无*输出参数:无*返回值:套接字的ID*/intcreat_socket(){intret;ret=socket(AF_INET,SOCK_STREAM,0);if(ret==-1){perror(“socketerror”);exit(1);}printf(“创建s…

    2022年7月13日
    17

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号