POJ1149 PIGS 【最大流量】

POJ1149 PIGS 【最大流量】

大家好,又见面了,我是全栈君,今天给大家准备了Idea注册码。

PIGS
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 16555   Accepted: 7416

Description

Mirko works on a pig farm that consists of M locked pig-houses and Mirko can’t unlock any pighouse because he doesn’t have the keys. Customers come to the farm one after another. Each of them has keys to some pig-houses and wants to buy a certain number of pigs. 

All data concerning customers planning to visit the farm on that particular day are available to Mirko early in the morning so that he can make a sales-plan in order to maximize the number of pigs sold. 

More precisely, the procedure is as following: the customer arrives, opens all pig-houses to which he has the key, Mirko sells a certain number of pigs from all the unlocked pig-houses to him, and, if Mirko wants, he can redistribute the remaining pigs across the unlocked pig-houses. 

An unlimited number of pigs can be placed in every pig-house. 

Write a program that will find the maximum number of pigs that he can sell on that day.

Input

The first line of input contains two integers M and N, 1 <= M <= 1000, 1 <= N <= 100, number of pighouses and number of customers. Pig houses are numbered from 1 to M and customers are numbered from 1 to N. 

The next line contains M integeres, for each pig-house initial number of pigs. The number of pigs in each pig-house is greater or equal to 0 and less or equal to 1000. 

The next N lines contains records about the customers in the following form ( record about the i-th customer is written in the (i+2)-th line): 

A K1 K2 … KA B It means that this customer has key to the pig-houses marked with the numbers K1, K2, …, KA (sorted nondecreasingly ) and that he wants to buy B pigs. Numbers A and B can be equal to 0.

Output

The first and only line of the output should contain the number of sold pigs.

Sample Input

3 3
3 1 10
2 1 2 2
2 1 3 3
1 2 6

Sample Output

7

Source

题目大意
 Mirko养着一些猪 猪关在一些猪圈里面 猪圈是锁着的
他自己没有钥匙(汗)
 仅仅有要来买猪的顾客才有钥匙
 顾客依次来 每一个顾客会用他的钥匙打开一些猪圈 买
走一些猪 然后锁上
 在锁上之前 Mirko有机会又一次分配这几个已打开猪圈
的猪
 如今给出一開始每一个猪圈的猪数 每一个顾客全部的钥匙
和要买走的猪数 问Mirko最多能卖掉几头猪

题解:对于每一个猪圈的第一个购买的人,加入一条源点到这个人的边,权为这个猪圈的猪数,对于后来的且想要购买该猪圈的人。加入一条第一个购买该猪圈的人到该人的边。权为inf,然后加入每一个人到汇点一条边,权值为该人想要购买的猪的头数。至此,构图完毕。

#include <stdio.h>
#include <string.h>
#define inf 0x3fffffff
#define maxn 110
#define maxm 1002

int pig[maxm], m, n, sink;
int G[maxn][maxn], queue[maxn];
bool vis[maxn]; int Layer[maxn];

bool countLayer() {
    memset(Layer, 0, sizeof(Layer));
    int id = 0, front = 0, now, i; 
    Layer[0] = 1; queue[id++] = 0;
    while(front < id) {
        now = queue[front++];
        for(i = 0; i <= sink; ++i)
            if(G[now][i] && !Layer[i]) {
                Layer[i] = Layer[now] + 1;
                if(i == sink) return true;
                else queue[id++] = i;
            }
    }
    return false;
}

int Dinic() {
    int minCut, pos, maxFlow = 0;
    int i, id = 0, u, v, now;
    while(countLayer()) {
        memset(vis, 0, sizeof(vis));
        vis[0] = 1; queue[id++] = 0;
        while(id) {
            now = queue[id - 1];
            if(now == sink) {
                minCut = inf;
                for(i = 1; i < id; ++i) {
                    u = queue[i - 1];
                    v = queue[i];
                    if(G[u][v] < minCut) {
                        minCut = G[u][v];
                        pos = u;
                    }
                }
                maxFlow += minCut;
                for(i = 1; i < id; ++i) {
                    u = queue[i - 1];
                    v = queue[i];
                    G[u][v] -= minCut;
                    G[v][u] += minCut;
                }
                while(queue[id - 1] != pos)
                    vis[queue[--id]] = 0;
            } else {
                for(i = 0; i <= sink; ++i) {
                    if(G[now][i] && Layer[now] + 1 == Layer[i] && !vis[i]) {
                        vis[i] = 1; queue[id++] = i; break;
                    }
                }
                if(i > sink) --id;
            }
        }
    }
    return maxFlow;
}

int main() {
    //freopen("stdin.txt", "r", stdin);
    int i, keys, num;
    while(scanf("%d%d", &m, &n) == 2) {
        sink = n + 1;
        for(i = 1; i <= m; ++i)
            scanf("%d", &pig[i]);
        memset(G, 0, sizeof(G));
        for(i = 1; i <= n; ++i) {
            scanf("%d", &keys);
            while(keys--) {
                scanf("%d", &num);
                if(pig[num] >= 0) {
                    G[0][i] += pig[num]; // 0 is source
                    pig[num] = -i; // 这里是标记第num个猪圈联通的第一个人
                } else G[-pig[num]][i] = inf;
            }
            scanf("%d", &G[i][sink]);
        }
        printf("%d\n", Dinic());
    }
    return 0;
}

2015.4.20

#include <iostream>
#include <cstdio>
#include <cstring>

using namespace std;

const int maxn = 105;
const int inf = 0x3f3f3f3f;
int G[maxn][maxn], M, N, S, T;
int pigHouse[maxn*10];

int Dinic(int s, int t);

void getMap()
{
    memset(G, 0, sizeof(G));
    S = 0; T = N + 1;

    int i, j, K, pos;
    for (i = 1; i <= M; ++i)
        scanf("%d", &pigHouse[i]);

    for (i = 1; i <= N; ++i) {
        scanf("%d", &K);
        while (K--) {
            scanf("%d", &pos);
            if (pigHouse[pos] >= 0) {
                G[S][i] += pigHouse[pos];
                pigHouse[pos] = -i;
            } else {
                G[-pigHouse[pos]][i] = inf;
            }
        }
        scanf("%d", &G[i][T]);
    }
}

void solve()
{
    cout << Dinic(S, T) << endl;
}

int main()
{
    while (cin >> M >> N) {
        getMap();
        solve();
    }
    return 0;
}

int queue[maxn];
bool vis[maxn]; int Layer[maxn];
bool countLayer(int s, int t) {
    memset(Layer, 0, sizeof(Layer));
    int id = 0, front = 0, now, i; 
    Layer[s] = 1; queue[id++] = s;
    while(front < id) {
        now = queue[front++];
        for(i = s; i <= t; ++i)
            if(G[now][i] && !Layer[i]) {
                Layer[i] = Layer[now] + 1;
                if(i == t) return true;
                else queue[id++] = i;
            }
    }
    return false;
}
// 源点,汇点,源点编号必须最小,汇点编号必须最大
int Dinic(int s, int t) {
    int minCut, pos, maxFlow = 0;
    int i, id = 0, u, v, now;
    while(countLayer(s, t)) {
        memset(vis, 0, sizeof(vis));
        vis[s] = true; queue[id++] = s;
        while(id) {
            now = queue[id - 1];
            if(now == t) {
                minCut = inf;
                for(i = 1; i < id; ++i) {
                    u = queue[i - 1];
                    v = queue[i];
                    if(G[u][v] < minCut) {
                        minCut = G[u][v];
                        pos = u;
                    }
                }
                maxFlow += minCut;
                for(i = 1; i < id; ++i) {
                    u = queue[i - 1];
                    v = queue[i];
                    G[u][v] -= minCut;
                    G[v][u] += minCut;
                }
                while(queue[id - 1] != pos)
                    vis[queue[--id]] = false;
            } else {
                for(i = s; i <= t; ++i) {
                    if(G[now][i] && Layer[now] + 1 == Layer[i] && !vis[i]) {
                        vis[i] = 1; queue[id++] = i; break;
                    }
                }
                if(i > t) --id;
            }
        }
    }
    return maxFlow;
}

版权声明:本文博客原创文章,博客,未经同意,不得转载。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/117136.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • DNS负载均衡和NGINX负载均衡「建议收藏」

    DNS负载均衡和NGINX负载均衡「建议收藏」负载均衡:把请求均匀的分摊到多个服务器上处理DNS负载均衡DNS负载均衡是通过DNS服务器实现的,主要用于把请求均匀的分布到nginx服务器上,真实情况可能是根据区域区分请求,但是一个地域中请求还是需要均匀的分配到nginx服务器上实现原理:DNS服务器为同一个主机名配置多个IP地址,在应答DNS查询时,DNS服务器对每个查询将以DNS文件中主机记录的IP地址按顺序返回不同的解析结果,将…

    2022年7月14日
    56
  • NorthWind 数据库「建议收藏」

    NorthWind 数据库「建议收藏」NorthWind数据库Categories:产品类别;Customers:客户;Employees:雇员EmployeesTerritories:员工涉及领域OrderDetails:订单明细Orders:订单Products:产品Region:地区Shippers:运货商Suppliers:供应商Territories:地域    在NorthWind

    2025年8月24日
    5
  • 微信公众平台、微信公众平台.小程序、微信.开放平台[通俗易懂]

    微信公众平台、微信公众平台.小程序、微信.开放平台[通俗易懂]一个开发者账号如何上线多个小程序?一个小程序账号对应一个小程序,可发布一个小程序上线。如果需要开发多款小程序,请注册新的账号。https://developers.weixin.qq.com/community/develop/doc/000886957d47f87cf9997f47c5b000小程序怎么发布,一套小程序代码怎么同时发布到不同的小程序上面,发布为体验版和正式版本!点击上传旁边的详情按钮,打开配置页面,修改项目addip,吧这个appid修改成需要覆盖的线上小程序id即可https:

    2022年6月16日
    43
  • nginx做正向代理_正向代理和反向代理图

    nginx做正向代理_正向代理和反向代理图环境在一个网络环境中,只有一台服务器可以使用互联网,而其他内网服务器都可以访问到这台互联网服务器,于是,我们可以通过nginx的正向代理访问互联网地址此处举例:互联网服务器IP:192.168.1.100内网服务器IP:192.168.1.101部署安装包:nginx-1.20.2.tar.gzproxy_connect模块:gitclonehttps://github.com/chobits/ngx_http_proxy_connect_module.git操…

    2022年10月21日
    6
  • windows net 命令详解「建议收藏」

    windows net 命令详解「建议收藏」综合了WINDOWS98,WINDOWSWORKSTATION和WINDOWSSERVER三个操作系统关于NET命令的解释,希望可以全面一些。先说一些:(1)NET命令是一个命令行命令。(2)管理网络环境、服务、用户、登陆。。。。等本地信息(3)WIN98,WINWORKSTATION和WINNT都内置了NET命令。(4)但WIN98的NET命令和WO

    2022年5月28日
    39
  • Matlab中random函数的使用

    Matlab中random函数的使用原文随机数生成方法:第一种方法是用random语句,其一般形式为              y=random(‘分布的英文名’,A1,A2,A3,m,n),表示生成m行n列的m×n个参数为(A1,A2,A3)的该分布的随机数。例如:(1)R=random(‘Normal’,0,1,2,4):生成期望为0,标准差为1的(2行4…

    2022年6月5日
    43

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号