[文学阅读] METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments

[文学阅读] METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments

大家好,又见面了,我是全栈君,今天给大家准备了Idea注册码。

METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments

Satanjeev Banerjee   Alon Lavie 
Language Technologies Institute  
Carnegie Mellon University  
Pittsburgh, PA 15213  
banerjee+@cs.cmu.edu  alavie@cs.cmu.edu


Important Snippets:

1. In  order  to  be  both  effective  and  useful,  an automatic metric for MT evaluation has to satisfy several basic criteria.  The primary and most intuitive requirement is that the metric have very high correlation with quantified human notions of MT quality.  Furthermore, a good metric should be as sensitive as possible to differences in MT quality between  different  systems,  and  between  different versions of the same system.  The metric should be 
consistent  (same  MT  system  on  similar  texts should produce similar scores), reliable (MT systems that score similarly can be trusted to perform similarly) and general (applicable to different MT tasks in a wide range of domains and scenarios).  Needless to say, satisfying all of the above criteria is  extremely  difficult,  and  all  of  the metrics  that have been proposed so far fall short of adequately addressing  most  if  not  all  of  these requirements.


2. It  is  based  on  an explicit word-to-word  matching  between  the  MT  output being evaluated and one or more reference translations.    Our  current  matching  supports  not  only matching  between  words that are  identical in the two  strings  being  compared,  but  can  also  match words  that  are  simple  morphological  variants  of each other


3. Each possible matching is scored based on a combination of several features.  These  currently  include  uni-gram-precision,  uni-gram-recall, and a direct measure of how out-of-order the words of the MT output are with respect to the reference. 


4.Furthermore, our results demonstrated that recall plays a more important role than precision  in  obtaining  high-levels  of  correlation  with human judgments. 


5.BLEU does not take recall into account directly.


6.BLEU  does  not  use  recall  because  the notion of recall is unclear when matching simultaneously  against  a  set  of  reference  translations (rather than a single reference).  To compensate for recall, BLEU uses a Brevity Penalty, which penalizes translations for being “too short”. 


7.BLEU  and  NIST  suffer  from  several  weaknesses:

   >The Lack of Recall

   >Use  of Higher Order  N-grams

   >Lack  of  Explicit  Word-matching  Between Translation and Reference

   >Use  of  Geometric  Averaging  of  N-grams


8.METEOR was designed to explicitly address the weaknesses in BLEU identified above.  It evaluates a  translation  by  computing  a  score  based  on  explicit  word-to-word  matches  between  the  translation and a reference translation. If more than one reference translation is available, the given translation  is  scored  against  each  reference  independently,  and  the  best  score  is  reported. 


9.Given a pair of translations to be compared (a system  translation  and  a  reference  translation), METEOR  creates  an alignment between  the  two strings. We define an alignment as a mapping be-tween unigrams, such that every unigram in each string  maps  to  zero  or  one  unigram  in  the  other string, and to no unigrams in the same string. 


10.This  alignment  is  incrementally  produced through a series of stages, each stage consisting of  two distinct phases. 


11.In the first phase an external module lists all the possible  unigram  mappings  between  the  two strings. 


12.Different modules map unigrams based  on  different  criteria.  The  “exact”  module maps  two  unigrams  if  they  are  exactly  the  same (e.g.  “computers”  maps  to  “computers”  but  not “computer”). The “porter stem” module maps two unigrams  if  they  are  the  same after they  are stemmed  using  the  Porter  stemmer  (e.g.:  “com-puters”  maps  to  both  “computers”  and  to  “com-puter”).  The  “WN  synonymy”  module  maps  two unigrams if they are synonyms of each other.


13.In  the  second  phase  of  each  stage,  the  largest subset of these unigram mappings is selected such 
that  the  resulting  set  constitutes  an alignment as defined above


14. METEOR selects that set that has the least number of unigram mapping crosses.


15.By default the first stage uses the “exact” mapping  module,  the  second  the  “porter  stem” module and the third the “WN synonymy” module.  

16. unigram precision (P)  

      unigram  recall  (R)  

      Fmean by combining the precision and recall via a harmonic-mean

      [文学阅读] METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments

To  take  into  account  longer matches, METEOR computes a penalty for a given alignment as follows.

chunks such that  the  uni-grams  in  each  chunk  are  in  adjacent  positions  in the system translation, and are also mapped to uni-grams that are in adjacent positions in the reference translation. 

     [文学阅读] METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments 

    [文学阅读] METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments


Conclusion: METEOR prefer recall to precision while BLEU is converse.Meanwhile, it incorporates many information.

版权声明:本文博客原创文章,博客,未经同意,不得转载。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/117748.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • idea如何运行Java Web项目(Servlet、JSP)

    idea如何运行Java Web项目(Servlet、JSP)很久以前用Servlet、JSP写了个小项目,最近有不少网友私信问我怎么部署,这篇文章应该可以帮你解决问题。1、代码获取gitclonehttps://gitee.com/DayCloud/student-manage.git2、

    2022年7月9日
    75
  • Session引起的备份失效处理

    Session引起的备份失效处理

    2021年8月19日
    55
  • 关于platform_device一些讲解「建议收藏」

    关于platform_device一些讲解「建议收藏」从2.6版本开始引入了platform这个概念,在开发底层驱动程序时,首先要确认的就是设备的资源信息,例如设备的地址,在2.6内核中将每个设备的资源用结构platform_device来描述,该结构体定义在kernel\include\linux\platform_device.h中:structplatform_device{constchar*name;u32id;structdevicedev;u32num_resources;structresou

    2022年7月24日
    11
  • 最长上升子序列nlogn算法

    最长上升子序列nlogn算法最长上升子序列nlogn算法题目描述:给定一个整型数组,求这个数组的最长严格递增子序列的长度。譬如序列12243的最长严格递增子序列为1,2,4或1,2,3.他们的长度为3。输入:输入可能包含多个测试案例。对于每个测试案例,输入的第一行为一个整数n(1输入的第二行包括n个整数,代表这个数组中的数字。整数均在int范围内。

    2022年6月2日
    44
  • C语言输入输出格式符[通俗易懂]

    C语言输入输出格式符[通俗易懂]C语言输入输出格式符printf函数(格式输出函数)1.一般格式printf(格式控制,输出表列)例如:printf(“i=%d,ch=%c\n”,i,ch);说明:(1)“格式控制”是用双撇号括起来的字符串,也称“转换控制字符串”,它包括两种信息:①格式说明:由“%”和格式字符组成,它的作用是将输出的数据转换为指定的格式输出。②普通字符,即需要原样输出的字符。(2)“输出表列”是需要输出的一些数据,可以是表达式(3)printf函数的一般形式可以表示为printf(参数1,参数2,…

    2022年7月24日
    15
  • ASP.NET_SessionId 何时生成?何时失效?有何作用呢?

    ASP.NET_SessionId 何时生成?何时失效?有何作用呢?相信做asp.netweb开发的码友们,对ASP.NET_SessionId一定不陌生。ASP.NET_SessionId保存在浏览器cookie中。那么它是来源于哪里?何时生成?何时失效?有何作用呢?带着这些疑问,我们开始探寻它。废话不多说,实践才是检验真理的最好方法,直接上代码。打开VS建立一个APS.NETMVC程序,在HOME页面添加如下代码:clearSession和clearSessionId这两个是ajax方式请求过去的,不会刷新页面,对应的后台方法如下:对应的action代

    2022年7月16日
    16

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号