[文学阅读] METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments

[文学阅读] METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments

大家好,又见面了,我是全栈君,今天给大家准备了Idea注册码。

METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments

Satanjeev Banerjee   Alon Lavie 
Language Technologies Institute  
Carnegie Mellon University  
Pittsburgh, PA 15213  
banerjee+@cs.cmu.edu  alavie@cs.cmu.edu


Important Snippets:

1. In  order  to  be  both  effective  and  useful,  an automatic metric for MT evaluation has to satisfy several basic criteria.  The primary and most intuitive requirement is that the metric have very high correlation with quantified human notions of MT quality.  Furthermore, a good metric should be as sensitive as possible to differences in MT quality between  different  systems,  and  between  different versions of the same system.  The metric should be 
consistent  (same  MT  system  on  similar  texts should produce similar scores), reliable (MT systems that score similarly can be trusted to perform similarly) and general (applicable to different MT tasks in a wide range of domains and scenarios).  Needless to say, satisfying all of the above criteria is  extremely  difficult,  and  all  of  the metrics  that have been proposed so far fall short of adequately addressing  most  if  not  all  of  these requirements.


2. It  is  based  on  an explicit word-to-word  matching  between  the  MT  output being evaluated and one or more reference translations.    Our  current  matching  supports  not  only matching  between  words that are  identical in the two  strings  being  compared,  but  can  also  match words  that  are  simple  morphological  variants  of each other


3. Each possible matching is scored based on a combination of several features.  These  currently  include  uni-gram-precision,  uni-gram-recall, and a direct measure of how out-of-order the words of the MT output are with respect to the reference. 


4.Furthermore, our results demonstrated that recall plays a more important role than precision  in  obtaining  high-levels  of  correlation  with human judgments. 


5.BLEU does not take recall into account directly.


6.BLEU  does  not  use  recall  because  the notion of recall is unclear when matching simultaneously  against  a  set  of  reference  translations (rather than a single reference).  To compensate for recall, BLEU uses a Brevity Penalty, which penalizes translations for being “too short”. 


7.BLEU  and  NIST  suffer  from  several  weaknesses:

   >The Lack of Recall

   >Use  of Higher Order  N-grams

   >Lack  of  Explicit  Word-matching  Between Translation and Reference

   >Use  of  Geometric  Averaging  of  N-grams


8.METEOR was designed to explicitly address the weaknesses in BLEU identified above.  It evaluates a  translation  by  computing  a  score  based  on  explicit  word-to-word  matches  between  the  translation and a reference translation. If more than one reference translation is available, the given translation  is  scored  against  each  reference  independently,  and  the  best  score  is  reported. 


9.Given a pair of translations to be compared (a system  translation  and  a  reference  translation), METEOR  creates  an alignment between  the  two strings. We define an alignment as a mapping be-tween unigrams, such that every unigram in each string  maps  to  zero  or  one  unigram  in  the  other string, and to no unigrams in the same string. 


10.This  alignment  is  incrementally  produced through a series of stages, each stage consisting of  two distinct phases. 


11.In the first phase an external module lists all the possible  unigram  mappings  between  the  two strings. 


12.Different modules map unigrams based  on  different  criteria.  The  “exact”  module maps  two  unigrams  if  they  are  exactly  the  same (e.g.  “computers”  maps  to  “computers”  but  not “computer”). The “porter stem” module maps two unigrams  if  they  are  the  same after they  are stemmed  using  the  Porter  stemmer  (e.g.:  “com-puters”  maps  to  both  “computers”  and  to  “com-puter”).  The  “WN  synonymy”  module  maps  two unigrams if they are synonyms of each other.


13.In  the  second  phase  of  each  stage,  the  largest subset of these unigram mappings is selected such 
that  the  resulting  set  constitutes  an alignment as defined above


14. METEOR selects that set that has the least number of unigram mapping crosses.


15.By default the first stage uses the “exact” mapping  module,  the  second  the  “porter  stem” module and the third the “WN synonymy” module.  

16. unigram precision (P)  

      unigram  recall  (R)  

      Fmean by combining the precision and recall via a harmonic-mean

      [文学阅读] METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments

To  take  into  account  longer matches, METEOR computes a penalty for a given alignment as follows.

chunks such that  the  uni-grams  in  each  chunk  are  in  adjacent  positions  in the system translation, and are also mapped to uni-grams that are in adjacent positions in the reference translation. 

     [文学阅读] METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments 

    [文学阅读] METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments


Conclusion: METEOR prefer recall to precision while BLEU is converse.Meanwhile, it incorporates many information.

版权声明:本文博客原创文章,博客,未经同意,不得转载。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/117748.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • fatal error解决方法_游戏fatal error

    fatal error解决方法_游戏fatal error开发环境:VisualStudio2017opencv-4.0.0-vc14_vc15首先区别几个选项:(1)***d.lib和***.lib区别:Release版本选择(通过在x64旁边的下拉栏中可以选择调试的版本)opencv_world400.libDebug版本选择opencv_world400d.lib(2)vc14和vc15区别:VC14构建需要安…

    2022年10月7日
    0
  • 微商相册服务器维护,微商相册

    微商相册服务器维护,微商相册Applealmond发表了文章•2020-04-2510:53•来自相关话题小程序这个依附于微信十亿流量的大平台,有着独天得厚的流量优势。且创作成本也比较低,因此近几年来搭建小程序的人越来越多。许多个人也在跃跃欲试,想要跻身小程序的领域又怕没有回报?那么接下来就和小编一起来了解一下小程序的更多内容。实例下图是微商相册小程序,许多在朋友圈活跃的微商如今都转战到了这里。微商相册内部可以和发…

    2022年5月17日
    41
  • spring事务回滚的多种方式「建议收藏」

    spring事务回滚的多种方式「建议收藏」转:https://www.cnblogs.com/zeng1994/p/8257763.htmlstart看下下面的说明,会对理解本人贴出的代码有帮助。1.代码中事务控制的3种方式编程式事务:就是直接在代码里手动开启事务,手动提交,手动回滚。优点就是可以灵活控制,缺点就是太麻烦了,太多重复的代码了。声明式事务:就是使用SpringAop配置事务,这种方式大大的简化了编码。需要注…

    2022年10月19日
    0
  • java补码运算_java中的补码运算

    java补码运算_java中的补码运算publicclassTest2_8{/*补码运算*在计算机中,数值一率采用补码来运算,如:5-3实例上是5+(-3);*正数与负数的关系:取反再加1**/publicstaticvoidmain(Stringargs[]){intfive=5;intthree=-3;//从输出结果来看负数是用补码来存储的//输出5和-3的二进制码,最高位(最左边那位)为0表示正数,为1…

    2022年9月22日
    1
  • Tokyo Tyrant(TTServer)系列(四)-tcrmgr远程管理与调试

    Tokyo Tyrant(TTServer)系列(四)-tcrmgr远程管理与调试

    2021年12月9日
    36
  • LARS算法的几何意义

    LARS算法的几何意义1  LARS算法简介  Efron于2004年发表在AnnalsofStatistics的文章LEASTANGLEREGRESSION中提出LARS算法,其核心思想是提出一种新的solutionpath(求解路径),即在已经入选的变量中,寻找一个新的路径,使得在这个路径上前进时,当前残差与已入选变量的相关系数都是相同的,直到找出新的比当前残差相关系数最大的

    2022年6月23日
    23

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号