[文学阅读] METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments

[文学阅读] METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments

大家好,又见面了,我是全栈君,今天给大家准备了Idea注册码。

METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments

Satanjeev Banerjee   Alon Lavie 
Language Technologies Institute  
Carnegie Mellon University  
Pittsburgh, PA 15213  
banerjee+@cs.cmu.edu  alavie@cs.cmu.edu


Important Snippets:

1. In  order  to  be  both  effective  and  useful,  an automatic metric for MT evaluation has to satisfy several basic criteria.  The primary and most intuitive requirement is that the metric have very high correlation with quantified human notions of MT quality.  Furthermore, a good metric should be as sensitive as possible to differences in MT quality between  different  systems,  and  between  different versions of the same system.  The metric should be 
consistent  (same  MT  system  on  similar  texts should produce similar scores), reliable (MT systems that score similarly can be trusted to perform similarly) and general (applicable to different MT tasks in a wide range of domains and scenarios).  Needless to say, satisfying all of the above criteria is  extremely  difficult,  and  all  of  the metrics  that have been proposed so far fall short of adequately addressing  most  if  not  all  of  these requirements.


2. It  is  based  on  an explicit word-to-word  matching  between  the  MT  output being evaluated and one or more reference translations.    Our  current  matching  supports  not  only matching  between  words that are  identical in the two  strings  being  compared,  but  can  also  match words  that  are  simple  morphological  variants  of each other


3. Each possible matching is scored based on a combination of several features.  These  currently  include  uni-gram-precision,  uni-gram-recall, and a direct measure of how out-of-order the words of the MT output are with respect to the reference. 


4.Furthermore, our results demonstrated that recall plays a more important role than precision  in  obtaining  high-levels  of  correlation  with human judgments. 


5.BLEU does not take recall into account directly.


6.BLEU  does  not  use  recall  because  the notion of recall is unclear when matching simultaneously  against  a  set  of  reference  translations (rather than a single reference).  To compensate for recall, BLEU uses a Brevity Penalty, which penalizes translations for being “too short”. 


7.BLEU  and  NIST  suffer  from  several  weaknesses:

   >The Lack of Recall

   >Use  of Higher Order  N-grams

   >Lack  of  Explicit  Word-matching  Between Translation and Reference

   >Use  of  Geometric  Averaging  of  N-grams


8.METEOR was designed to explicitly address the weaknesses in BLEU identified above.  It evaluates a  translation  by  computing  a  score  based  on  explicit  word-to-word  matches  between  the  translation and a reference translation. If more than one reference translation is available, the given translation  is  scored  against  each  reference  independently,  and  the  best  score  is  reported. 


9.Given a pair of translations to be compared (a system  translation  and  a  reference  translation), METEOR  creates  an alignment between  the  two strings. We define an alignment as a mapping be-tween unigrams, such that every unigram in each string  maps  to  zero  or  one  unigram  in  the  other string, and to no unigrams in the same string. 


10.This  alignment  is  incrementally  produced through a series of stages, each stage consisting of  two distinct phases. 


11.In the first phase an external module lists all the possible  unigram  mappings  between  the  two strings. 


12.Different modules map unigrams based  on  different  criteria.  The  “exact”  module maps  two  unigrams  if  they  are  exactly  the  same (e.g.  “computers”  maps  to  “computers”  but  not “computer”). The “porter stem” module maps two unigrams  if  they  are  the  same after they  are stemmed  using  the  Porter  stemmer  (e.g.:  “com-puters”  maps  to  both  “computers”  and  to  “com-puter”).  The  “WN  synonymy”  module  maps  two unigrams if they are synonyms of each other.


13.In  the  second  phase  of  each  stage,  the  largest subset of these unigram mappings is selected such 
that  the  resulting  set  constitutes  an alignment as defined above


14. METEOR selects that set that has the least number of unigram mapping crosses.


15.By default the first stage uses the “exact” mapping  module,  the  second  the  “porter  stem” module and the third the “WN synonymy” module.  

16. unigram precision (P)  

      unigram  recall  (R)  

      Fmean by combining the precision and recall via a harmonic-mean

      [文学阅读] METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments

To  take  into  account  longer matches, METEOR computes a penalty for a given alignment as follows.

chunks such that  the  uni-grams  in  each  chunk  are  in  adjacent  positions  in the system translation, and are also mapped to uni-grams that are in adjacent positions in the reference translation. 

     [文学阅读] METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments 

    [文学阅读] METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments


Conclusion: METEOR prefer recall to precision while BLEU is converse.Meanwhile, it incorporates many information.

版权声明:本文博客原创文章,博客,未经同意,不得转载。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/117748.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • docker日志存放位置_oracle数据库日志文件在哪里

    docker日志存放位置_oracle数据库日志文件在哪里binlog就是binarylog,二进制日志文件,这个文件记录了mysql所有的dml操作。通过binlog日志我们可以做数据恢复,做主住复制和主从复制等等。对于开发者可能对binlog并不怎么关注,但是对于运维或者架构人员来讲是非常重要的。如何开启mysql的binlog日志呢?在my.inf主配置文件中直接添加三行log_bin=ONlog_bin_basename=/var/lib/m…

    2022年10月15日
    4
  • datax(12):调度源码解读AbstractScheduler「建议收藏」

    datax(12):调度源码解读AbstractScheduler「建议收藏」datax的jobContainer最终会通过调度周期性的执行,今天把它看完;一、基类AbstractScheduler概述类继承关系全部方法二、AbstractScheduler的主要属性和方法1、主要属性/***脏数据行数检查器,用于运行中随时检查脏数据是否超过限制(脏数据行数,或脏数据百分比)*/privateErrorRecordCheckererrorLimit;/***积累容器通讯器,来处理JobContainer、Tas.

    2022年5月17日
    50
  • pycharm如何设置快捷键「建议收藏」

    pycharm如何设置快捷键「建议收藏」pycharm中默认ctrl+d是复制一行,这和jupyter完全不一样,我比较喜欢的是:ctrl+d:删除一行ctrl+c:复制一行所以想要将pycharm进行修改。我们以ctrl+d:删除一行为例。找到如下:点击那一行。然后弹出如下对话框:我们不需要删除,直接按快捷键ctrl+d,自动更换为ctrl+d。此时会说和其他快捷键冲突了,没事,删除其他快捷键即可,那些都是一些不常用的。然后,我们可以删除以前的那个快捷键。完成…

    2022年8月29日
    4
  • java字符串分割split_js的sort排序方法

    java字符串分割split_js的sort排序方法●利用split函数:Strings=newString(“2_8_7_4_3_9_1”);String[]arr=s.split(“_”);Java中用split函数进行分割字符串。1.语法如下String.split(sourceStr,maxSplit)String.split(sourceStr)参数说明:sourceStr是被分割的字

    2022年9月30日
    4
  • Python 学习笔记 列表 xxx XXX

    Python 学习笔记 列表 xxx XXXPython学习笔记列表xxxXXXbicycles=[‘trek’,’cannondale’,’redline’,’specialized’]print(bicycles)print(bicycles[0])print(bicycles[0].title())print(bicycles[-1])names=[‘wenwen’,’juanjuan’,’yuyu’]forxinnames: prin…

    2022年8月22日
    12
  • DruidDataSource配置属性列表

    DruidDataSource配置属性列表

    2021年8月30日
    62

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号