[文学阅读] METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments

[文学阅读] METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments

大家好,又见面了,我是全栈君,今天给大家准备了Idea注册码。

METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments

Satanjeev Banerjee   Alon Lavie 
Language Technologies Institute  
Carnegie Mellon University  
Pittsburgh, PA 15213  
banerjee+@cs.cmu.edu  alavie@cs.cmu.edu


Important Snippets:

1. In  order  to  be  both  effective  and  useful,  an automatic metric for MT evaluation has to satisfy several basic criteria.  The primary and most intuitive requirement is that the metric have very high correlation with quantified human notions of MT quality.  Furthermore, a good metric should be as sensitive as possible to differences in MT quality between  different  systems,  and  between  different versions of the same system.  The metric should be 
consistent  (same  MT  system  on  similar  texts should produce similar scores), reliable (MT systems that score similarly can be trusted to perform similarly) and general (applicable to different MT tasks in a wide range of domains and scenarios).  Needless to say, satisfying all of the above criteria is  extremely  difficult,  and  all  of  the metrics  that have been proposed so far fall short of adequately addressing  most  if  not  all  of  these requirements.


2. It  is  based  on  an explicit word-to-word  matching  between  the  MT  output being evaluated and one or more reference translations.    Our  current  matching  supports  not  only matching  between  words that are  identical in the two  strings  being  compared,  but  can  also  match words  that  are  simple  morphological  variants  of each other


3. Each possible matching is scored based on a combination of several features.  These  currently  include  uni-gram-precision,  uni-gram-recall, and a direct measure of how out-of-order the words of the MT output are with respect to the reference. 


4.Furthermore, our results demonstrated that recall plays a more important role than precision  in  obtaining  high-levels  of  correlation  with human judgments. 


5.BLEU does not take recall into account directly.


6.BLEU  does  not  use  recall  because  the notion of recall is unclear when matching simultaneously  against  a  set  of  reference  translations (rather than a single reference).  To compensate for recall, BLEU uses a Brevity Penalty, which penalizes translations for being “too short”. 


7.BLEU  and  NIST  suffer  from  several  weaknesses:

   >The Lack of Recall

   >Use  of Higher Order  N-grams

   >Lack  of  Explicit  Word-matching  Between Translation and Reference

   >Use  of  Geometric  Averaging  of  N-grams


8.METEOR was designed to explicitly address the weaknesses in BLEU identified above.  It evaluates a  translation  by  computing  a  score  based  on  explicit  word-to-word  matches  between  the  translation and a reference translation. If more than one reference translation is available, the given translation  is  scored  against  each  reference  independently,  and  the  best  score  is  reported. 


9.Given a pair of translations to be compared (a system  translation  and  a  reference  translation), METEOR  creates  an alignment between  the  two strings. We define an alignment as a mapping be-tween unigrams, such that every unigram in each string  maps  to  zero  or  one  unigram  in  the  other string, and to no unigrams in the same string. 


10.This  alignment  is  incrementally  produced through a series of stages, each stage consisting of  two distinct phases. 


11.In the first phase an external module lists all the possible  unigram  mappings  between  the  two strings. 


12.Different modules map unigrams based  on  different  criteria.  The  “exact”  module maps  two  unigrams  if  they  are  exactly  the  same (e.g.  “computers”  maps  to  “computers”  but  not “computer”). The “porter stem” module maps two unigrams  if  they  are  the  same after they  are stemmed  using  the  Porter  stemmer  (e.g.:  “com-puters”  maps  to  both  “computers”  and  to  “com-puter”).  The  “WN  synonymy”  module  maps  two unigrams if they are synonyms of each other.


13.In  the  second  phase  of  each  stage,  the  largest subset of these unigram mappings is selected such 
that  the  resulting  set  constitutes  an alignment as defined above


14. METEOR selects that set that has the least number of unigram mapping crosses.


15.By default the first stage uses the “exact” mapping  module,  the  second  the  “porter  stem” module and the third the “WN synonymy” module.  

16. unigram precision (P)  

      unigram  recall  (R)  

      Fmean by combining the precision and recall via a harmonic-mean

      [文学阅读] METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments

To  take  into  account  longer matches, METEOR computes a penalty for a given alignment as follows.

chunks such that  the  uni-grams  in  each  chunk  are  in  adjacent  positions  in the system translation, and are also mapped to uni-grams that are in adjacent positions in the reference translation. 

     [文学阅读] METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments 

    [文学阅读] METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments


Conclusion: METEOR prefer recall to precision while BLEU is converse.Meanwhile, it incorporates many information.

版权声明:本文博客原创文章,博客,未经同意,不得转载。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/117748.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 使用tomcat manager

    使用tomcat manager

    2021年8月24日
    48
  • 计算机病毒的算法,计算机病毒从算法划分为几个类型

    计算机病毒的算法,计算机病毒从算法划分为几个类型随着计算机应用的日益普及,计算机病毒也开始入侵并呈不断蔓延趋势,对计算机的正常运行造成了威胁。那么,计算机病毒从算法划分为几个类型那?就让佰佰安全网的小编和你一起去了解一下吧!计算机病毒从算法划分为以下几个类型:1、伴随型病毒,这一类病毒并不改变文件本身,它们根据算法产生EXE文件的伴随体,具有同样的名字和不同的扩展名(COM),例如:XCOPY.EXE的伴随体是XCOPY.COM。病毒把自身写入…

    2022年6月6日
    31
  • CSS 图片去色处理

    CSS 图片去色处理说到对图片进行处理,我们经常会想到PhotoShop这类的图像处理工具。作为前端开发者,我们经常会需要处理一些特效,例如根据不同的状态,让图标显示不同的颜色。或者是hover的时候,对图片的对比度,阴影进行处理。//黑白色img{transition:all.3sease;filter:grayscale(100%);opacity:.6;}//正常颜色img:hover{filter:none;opacity:1;

    2022年10月6日
    2
  • JS-JavaScript学习笔记(一)[通俗易懂]

    JS-JavaScript学习笔记(一)

    2022年1月23日
    49
  • Alex 的 Hadoop 菜鸟教程: 第16课 Pig 安装使用教程

    Alex 的 Hadoop 菜鸟教程: 第16课 Pig 安装使用教程本教程介绍Pig的安装和使用。hdfs虽说是一个文件空间,但是我们每次要查看hdfs上的文件的时候都要输入一大串命令,比如一个简单的ls都需要输入:hdfsdfs-ls/,而且还不能cd到某个目录,这样就造成了每次ls都要带上全路径的麻烦,能不能有一个工具可以模拟linux下的shell呢?Pig就实现了这样的需求,可以直接ls,可以cd到某个目录。并且Pig还创造了PigLatin语言,可以通过Pig写一个类似存储过程的MapReduce的Job,pig会自动帮你把这个job翻译成MapR

    2022年5月9日
    50
  • ADRC学习笔记(二)

    ADRC学习笔记(二)1.最速跟踪微分器TD它的离散表达式为:参数中:V(t)是目标值h、h0为积分步长,一般来说h可以等于h0,但是为了减少超调和减少震荡,才把他们分开,一般h0比h大,比如大20倍。当h0较大时,能够明显减少震荡,所以也叫滤波因子。减小h可以抑制噪声放大作用。r为速度因子,值越大,逼近速度越快,但是最好根据实际被控对象的可承受能力而定。表达式中:其中fhan函数第一种表达式为:fhan函…

    2022年5月12日
    36

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号