N-Queens And N-Queens II [LeetCode] + Generate Parentheses[LeetCode] + 回溯法

N-Queens And N-Queens II [LeetCode] + Generate Parentheses[LeetCode] + 回溯法

大家好,又见面了,我是全栈君,祝每个程序员都可以多学几门语言。

回溯法

百度百科:回溯法(探索与回溯法)是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步又一次选择,这样的走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。

在包括问题的全部解的解空间树中,依照深度优先搜索的策略,从根结点出发深度探索解空间树。当探索到某一结点时,要先推断该结点是否包括问题的解,假设包括,就从该结点出发继续探索下去,假设该结点不包括问题的解,则逐层向其祖先结点回溯。(事实上回溯法就是对隐式图的深度优先搜索算法)。 若用回溯法求问题的全部解时,要回溯到根,且根结点的全部可行的子树都要已被搜索遍才结束。 而若使用回溯法求任一个解时,仅仅要搜索到问题的一个解就能够结束。


做完以下几题,应该会对回溯法的掌握有非常大帮助
N-Queens http://oj.leetcode.com/problems/n-queens/
N-Queens II   http://oj.leetcode.com/problems/n-queens-ii/
Generate Parentheses http://oj.leetcode.com/problems/generate-parentheses/


N-Queens

Follow up for N-Queens problem.

Now, instead outputting board configurations, return the total number of distinct solutions.

N-Queens And N-Queens II [LeetCode] + Generate Parentheses[LeetCode] + 回溯法

Given an integer n, return all distinct solutions to the n-queens puzzle.

Each solution contains a distinct board configuration of the n-queens’ placement, where 'Q' and '.' both indicate a queen and an empty space respectively.

For example,
There exist two distinct solutions to the 4-queens puzzle:

[
 [".Q..",  // Solution 1
  "...Q",
  "Q...",
  "..Q."],

 ["..Q.",  // Solution 2
  "Q...",
  "...Q",
  ".Q.."]
]

经典的八皇后问题的扩展,利用回溯法,

(1)从第一列開始试探性放入一枚皇后

(2)推断放入后棋盘是否安全,调用checkSafe()推断

(3)若checkSafe()返回true,继续放下一列,若返回false,回溯到上一列,又一次寻找安全位置

(4)遍历全然部位置,得到结果

class Solution {public:    vector<vector<string> > solveNQueens(int n) {        int *posArray = new int[n];        int count = 0;        vector< vector<string> > ret;          placeQueue(0, n, count, posArray, ret);        return ret;    }        //检查棋盘安全性    bool checkSafe(int row, int *posArray){        for(int i=0; i < row; ++i){            int diff = abs(posArray[i] - posArray[row]);                  if (diff == 0 || diff == row - i) {                       return false;              }          }        return true;    }        //放置皇后    void placeQueue(int row, int n, int &count, int *posArray, vector< vector<string> > &ret){        if(n == row){            count++;            vector<string> tmpRet;              for(int i = 0; i < row; i++){                  string str(n, '.');                  str[posArray[i]] = 'Q';                  tmpRet.push_back(str);              }              ret.push_back(tmpRet);            return;        }        //从第一列開始试探        for(int col=0; col<n; ++col){            posArray[row] = col;            if(checkSafe(row, posArray)){                 //若安全,放置下一个皇后                placeQueue(row+1, n, count, posArray, ret);            }        }    }};

N-Queens II

 

Follow up for N-Queens problem.

Now, instead outputting board configurations, return the total number of distinct solutions.

仅仅需计算个数count即可,略微改动

class Solution {public:    int totalNQueens(int n) {        int *posArray = new int[n];        int count = 0;        vector< vector<string> > ret;          placeQueue(0, n, count, posArray, ret);        return count;    }         //检查棋盘安全性    bool checkSafe(int row, int *posArray){        for(int i=0; i < row; ++i){            int diff = abs(posArray[i] - posArray[row]);                  if (diff == 0 || diff == row - i) {                       return false;              }          }        return true;    }        //放置皇后    void placeQueue(int row, int n, int &count, int *posArray, vector< vector<string> > &ret){        if(n == row){            count++;            return;        }        //从第一列開始试探        for(int col=0; col<n; ++col){            posArray[row] = col;            if(checkSafe(row, posArray)){                //若安全,放置下一个皇后                placeQueue(row+1, n, count, posArray, ret);            }        }    }};

Generate Parentheses

刚做完N-QUEUE问题,受之影响,此问题也使用回溯法解决,代码看上去多了非常多

class Solution {
public:
    vector<string> generateParenthesis(int n) {
       vector<string> vec; 
       int count = 0;
       int *colArr = new int[2*n];
       generate(2*n, count, 0, colArr, vec);
       delete[] colArr;
       return vec;
    }
    
    //放置括弧
    void generate(int n,int &count, int col, int *colArr, vector<string> &vec){
        if(col == n){
            ++count;
            string temp(n,'(');
            for(int i = 0;i< n;++i){
                if(colArr[i] == 1)
                    temp[i] = ')';
            }
            vec.push_back(temp);
            return;
        }
        for(int i=0; i<2;++i){
            colArr[col] = i;
            if(checkSafe(col, colArr, n)){
                //放置下一个括弧
                generate(n, count, col+1, colArr, vec);
            }
        }
    }
    
    //检查安全性
    bool checkSafe(int col, int *colArr, int n){
		int total = n/2;
        if(colArr[0] == 1) return false;
        int left = 0, right = 0;
        for(int i = 0; i<=col; ++i){
            if(colArr[i] == 0 )
                ++left;
            else 
                ++right;
        }
        if(right > left || left > total || right > total)
            return false;
        else
            return true;
    }
};

google了下,http://blog.csdn.net/pickless/article/details/9141935 代码简洁非常多,供參考

class Solution {
public:
    vector<string> generateParenthesis(int n) {
        // Start typing your C/C++ solution below
        // DO NOT write int main() function
        vector<string> ans;
        getAns(n, 0, 0, "", ans);
        return ans;
    }

private:
    void getAns(int n, int pos, int neg, string temp, vector<string> &ans) {
        if (pos < neg) {
            return;
        }
        if (pos + neg == 2 * n) {
            if (pos == neg) {
                ans.push_back(temp);
            }
            return;
        }
        getAns(n, pos + 1, neg, temp + '(', ans);
        getAns(n, pos, neg + 1, temp + ')', ans);
    }
};

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/118294.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号