深度学习论文笔记-Deep Learning Face Representation from Predicting 10,000 Classes

深度学习论文笔记-Deep Learning Face Representation from Predicting 10,000 Classes

来自:CVPR 2014   作者:Yi Sun ,Xiaogang Wang,Xiaoao Tang

题目:Deep Learning Face Representation from Predicting 10,000 Classes

主要内容:通过深度学习来进行图像高级特征表示(DeepID),进而进行人脸的分类。

长处:在人脸验证上面做,能够非常好的扩展到其它的应用,而且夸数据库有效性;在数据库中的类别越多时,其泛化能力越强,特征比較少,不像其它特征好几K甚至上M,好的泛化能力+只是拟合于小的子训练集。

主要过程:採用卷积神经网络(CNN)方法,而且採用CNN最后一层的激活值输出作为features,不同的人脸区域放入CNN中提取特征,形成了互补、过全然的特征表示。(form complementary and over-complete representations)。

通过深度卷积网络来学习高级的过全然特征(有监督),CNN的最后一层激活值作为输出,

详细细节:

採用3个尺度,10个人脸region,60个patch,训练60个CNN网络,每一个提取两个160维的特征(两个是由于: extracts two 160-dimensional DeepID vectors from a particular patch and its horizontally flipped counterpart.),所以最后一张人脸图像的特征的维度是:160*2*60=19200维。

CNN的结构例如以下:

<span>深度学习论文笔记-Deep Learning Face Representation from Predicting 10,000 Classes</span>

<span>深度学习论文笔记-Deep Learning Face Representation from Predicting 10,000 Classes</span>

说明:共5层网络,越往上的神经元的个数就越少,到最后就剩下160个神经元的输出,上面的Face patches 是进过对齐过后的的人脸块,也就是说已左(右)眼为中心的人脸区域块,嘴角为中心的人脸区域块等等,这样就有多个不同的输入块输入到CNN中,文章採用了把倒数第二层的输出+倒数第一层的输出作为特征(这应该是採用12年的Le Cun 那篇文章的track)。最后再把不同的块所输出的特征连接起来,就形成了一个终于一张人脸的特征。然后再用各种分类器对其特征进行分类。

採用Max-Pooling,softmax;

输入图像:39*31*k 个人矩形脸图像块+31*31*k  (这里k在彩色图像时为3,灰度时k为1)个人脸正方形块(由于后面要考虑到是全局图像还是局部图像,且须要考虑到尺度问题),使用ReLU非线性处理;

注意到【Weights in higher convolutional layers of our ConvNets are locally shared to learn different mid- or high-level features in different regions [18]. r in Equation 1  indicates a local region where weights are shared. In the third convolutional layer, weights are locally shared in every 2  2 regions, while weights in the fourth convolutional layer are totally unshared.】

<span>深度学习论文笔记-Deep Learning Face Representation from Predicting 10,000 Classes</span>

不同的输入图像:

<span>深度学习论文笔记-Deep Learning Face Representation from Predicting 10,000 Classes</span><span>深度学习论文笔记-Deep Learning Face Representation from Predicting 10,000 Classes</span>

当中局部图像是关键点(每一个图像一个关键点)居中,不同的区域大小和不同的尺度图像输入到CNN中,其CNN的结构可能会不同样,可是最后的特征的都是160维度,最后将全部的特征级联起来。

最后一层的特征是第三层和第四层全相连(比較特殊的地方),由于这样能够添�尺度特征,由于第三层和第四层学习到的特征的尺度是不一样的。

特点:提取的特征非常Compact,仅仅有160*k,k不大。自然就具有判别力了。

在训练CNN中,训练数据的类别越多,其性能越好,可是会在训练模型中出现故障,也就是太慢。

CNN的输出是特征,而不是输出类别,

分类

採用Joint Bayesian 来进行人脸的verification;也採用了神经网络来比較,可是联合贝叶斯的效果比較好;

实验

由于在LFW中大部分人的图像个数是有限的,非常多人仅仅有一张图片;所以採用了新的数据库来训练模型:CelebFaces :八万多幅,五千多人,每一个人差点儿相同16张图片,

===============

方法比較:

当前的人脸识别方法:过全然的低级别特征+浅层模型。

ConvNet 可以有效地提取高级视觉特征。

已有的DL方法:

1. Huang【CVPR2012】的生成模型+非监督;

2. Cai 【2012】的深度非线性度量学习;

3 Sun【CVPR2013】的监督学习+二类分类(人脸校验 verfication),是作者去年写的。而这一篇文章是多类分类问题(identification),并且这篇文章中,有10000类的人脸类别。

================

结果:在有对齐人脸的情况下,可以在LFW数据库上识别率达到97.5%。(其训练数据不是LFW,有其它的训练数据来训练模型)。

不理解的地方:

<span>深度学习论文笔记-Deep Learning Face Representation from Predicting 10,000 Classes</span>


版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/119082.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 讲座:计算机专业及其学习

    讲座:计算机专业及其学习

    2022年1月21日
    41
  • 行为树

    行为树行为树常被用来实现游戏中的AI。每次执行AI,都会从根节点遍历整个树,父节点执行子节点,子节点执行完后将结果返回父节点。下面是基本的四个节点:1*顺序节点(Sequence):属于组合节点,顺序执行

    2022年8月1日
    4
  • SQLServer2008R2密钥「建议收藏」

    SQLServer2008R2密钥:Developer:PTTFM-X467G-P7RH2-3Q6CG-4DMYBEnterprise:JD8Y6-HQG69-P9H84-XDTPG-34MBBMicrosoftSQLServer2008R2序列号密钥开发版32位:MC46H-JQR3C-2JRHY-XYRKY-QWPVM开发版64位:FTMGC-B2J97-PJ4QG-…

    2022年4月6日
    3.9K
  • AngularJS自己定义标签加入回调函数eval()

    AngularJS自己定义标签加入回调函数eval()

    2022年3月3日
    41
  • python——循环(for循环、while循环)及练习

    python——循环(for循环、while循环)及练习目标程序的三大流程1.while循环的基本使用 2.break和continue 3.while循环嵌套在程序开发中,一共有三种流程方式:顺序:从上向下,顺序执行代码 分支:根据条件判断,决定执行代码的分支 循环:让特定代码重复执行(解决程序员重复工作)一、for循环1、基本用法for循环使用的语法:“”"for变量inrange(10):循环…

    2022年8月12日
    5
  • 树莓派 gpio usb_树莓派gpio编程

    树莓派 gpio usb_树莓派gpio编程概览树莓派最令人兴奋的特点之一是它有一个GPIO连接器可以用来接其他的硬件设备。GPIO连接器实际上是由许多不同类型的接口组成的:真正的GPIO(GeneralPurposeInputOutput,通用输入/输出)针脚,你可以用来控制LED灯的开和关。I2C(Inter-IntegratedCircuit)接口针脚,使你能够仅使用2个控制针脚连接硬件模块。SPI(SerialPeriph…

    2022年10月14日
    0

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号