大数据去重方案

大数据去重方案

数据库中有有一张表专门存储用户的维度数据,由于随着时间的推移,用户的维度数据也可能发生变化,故每一次查看都会保存一次记录。
现在需要对数据按用户分析,但当中有大量的重复数据,仅用数据库的等值去重明显不可行。

对数据内容求MD5值

    MD5值的特点:
    1.压缩性:任意长度的数据,算出的MD5值长度都是固定的。
    2.容易计算:从原数据计算出MD5值很容易。
    3.抗修改性:对原数据进行任何改动,哪怕只修改1个字节,所得到的MD5值都有很大区别。
    4.强抗碰撞:已知原数据和其MD5值,想找到一个具有相同MD5值的数据(即伪造数据)是非常困难的。

根据MD5值的特点,对每条记录的维度数据内容计算MD5值,然后根据MD5值判断重复记录。

对数据入库之后利用sql直接查出重复数据,然后将重复数据移除或者标记。

至少在现阶段内存和CPU的执行效率在固定时间内是有限的,大量的数据的查重和去重处理不可能同时在内存中进行。就像外部排序算法和内部排序算法差别很大,遇到此类大量数据查重问题对算法进行设计是有必要的。

布隆过滤器

布隆过滤器是一种采用hash法进行查重的工具。它将每一条数据进行n次独立的hash处理,每次处理得到一个整数,总共得到n个整数。使用一个很长的数组表示不同的整数,每一次插入操作把这n个整数对应的位置的0设置为1(如果已经被设置为1则不变)。下次查找的时候经过同样的计算,如果这几个位置都是1则说明已经存在。

布隆过滤器的优点是使用方便,因为并不将key存放进内存所以十分节省空间,多个hash算法无关,可以并发执行效率高。缺点也是显而易见的,这种算法是可能出现错误,有误判率这种概念。通过hash的次数我们可以降低误判率,但是不能保证没有误判的情况。

BitMap

比如有2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。

一个数字的状态只有三种,分别为不存在,只有一个,有重复。因此,我们只需要2bits就可以对一个数字的状态进行存储了,假设我们设定一个数字不存在为00,存在一次01,存在两次及其以上为11。那我们大概需要存储空间几十兆左右。接下来的任务就是遍历一次这2.5亿个数字,如果对应的状态位为00,则将其变为01;如果对应的状态位为01,则将其变为11;如果为11,,对应的转态位保持不变。

最后,我们将状态位为01的进行统计,就得到了不重复的数字个数,时间复杂度为O(n)。

hash分组

如果有两份50G的数据,要查重,内存4G,怎么查?

想法是先将50G的数据分别做hash%1000,分成1000个文件,理论上hash做得好那么这1000个文件的大小是差不多接近的。如果有重复,那么A和B的重复数据一定在相对同一个文件内,因为hash结果是一样的。将1000个文件分别加载进来,一一比对是否有hash重复。这种想法是先把所有数据按照相关性进行分组,相关的数据会处于同样或者接近的位置中,再将小文件进行对比。

有1千万条短信,找出重复出现最多的前10条?

可以用哈希表的方法对1千万条分成若干组进行边扫描边建散列表。第一次扫描,取首字节,尾字节,中间随便两字节作为Hash Code,插入到hash table中。并记录其地址和信息长度和重复次数,1千万条信息,记录这几个信息还放得下。同Hash Code且等长就疑似相同,比较一下。相同记录只加1次进hash table,但将重复次数加1。一次扫描以后,已经记录各自的重复次数,进行第二次hash table的处理。用线性时间选择可在O(n)的级别上完成前10条的寻找。分组后每份中的top10必须保证各不相同,可hash来保证,也可直接按hash值的大小来分类。

使用数据库建立关键字段(一个或者多个)建立索引进行去重

根据url地址进行去重:

使用场景:url地址对应的数据不会变的情况,url地址能够唯一判别一条数据的情况

思路:

  url存在Redis中

  拿到url地址,判断url在Redis的集合中是否存在

    存在:说明url地址已经被请求过了,不在请求

    不存在:说明url地址没有被请求过,请求,把该url地址存入Redis的集合中

布隆过滤器:

  使用多个加密算法加密url地址,得到多个值

  往对应值的位置把结果设置为1

  新来的一个url地址,一样通过加密算法生成多个值

    如果对应位置的值全为1,说明这个url地址已经被抓取过了

    否则没有被抓取过,就把对应的位置的值设置为1

根据数据本身进行去重:

  选择特定的字段(能够唯一标识数据的字段),使用加密算法(MD5,sha1)将字段进行加密,生成字符串,存入Redis的集合中

  后续新来一条数据,同样的方式进行加密,

    如果得到的字符串在Redis中存在,说明数据存在,对数据进行更新,

    否则说明数据不存在,对数据进行插入。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/119553.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • perf4j @Profiled常用写法「建议收藏」

    perf4j @Profiled常用写法「建议收藏」perf4j@Profiled常用写法1、默认写法@Profiled日志语句形如:2009-09-0714:37:23,734[main]INFOorg.perf4j.TimingLogger-start[开始时间]time[执行耗时]tag[方法名]2、带logger标识@Profiled(logger=”test.PriceService”)由此产生…

    2022年4月27日
    26
  • PyCharm – 自动缩进代码 (Auto-Indent Lines)

    PyCharm – 自动缩进代码 (Auto-Indent Lines)PyCharm-自动缩进代码(Auto-IndentLines)1.Ctrl+A全选代码。2.Code->Auto-IndentLines自动缩进快捷键Ctrl+Alt+I。Referenceshttps://yongqiang.blog.csdn.net/

    2022年10月28日
    0
  • 盘点值得互联网创业者学习的十大做事风格

    盘点值得互联网创业者学习的十大做事风格中国互联网通过第19次互联网报告得出很多数据,综合成一句话就是:“发展速度惊人。”面对如此庞大的市场,国外网络巨头虎视眈眈,总想找机会跨进国门,却因为不了解中国互联网运营规范及网民的习惯,或是犹豫不决或是屡遭搁浅。  而与此同时,国内众多网站正在疯狂抢夺这块蛋糕。在这些网站的背后出谋划策的人都是大众较熟悉的,他们的思路以及做事风格,值得现在的互联网创业者学习、借荐,有相似者可对号入座。

    2022年8月20日
    6
  • 线性代数行列式计算方法之降阶法

    声明与简介线性代数行列式计算之降阶法一般针对于行列是0元素较多的情况,它的核心思想是对某行(列)能方便的进行行列式展开,即某行(列)元素与其代数余子式的乘积,而该行(列)元素为0的较多,对应的代数余子式又比较简单的求出(比如三角形的行列式)。降阶法代数余子式展开计算n阶行列式:过程详解#1思路Step1先观察行列式的特点,再整理思路Step2以第1列为轴,不难发现它对应的代数余子式是个对角形。Step3思路形成,以第1列对应的两个元素a和b分别乘以对应的代数余子.

    2022年4月8日
    193
  • python经典小程序:猜数字游戏[通俗易懂]

    python经典小程序:猜数字游戏[通俗易懂]#猜数字游戏importrandom#impor语句导入random模块guessor=0;print("#"*30)#输出30个”#“(”##############

    2022年7月6日
    20
  • java学的什么软件_java初学者用什么软件[通俗易懂]

    java学的什么软件_java初学者用什么软件[通俗易懂]Java初学者可以使用MyEclipse或eclipse以及记事本。随着学习的深入,相信你会逐渐明白,你会从中找到最合适的开发工具。java初学者使用什么软件Java初学者可以使用MyEclipse、eclipse或记事本。1对于初学者,不建议使用ide开发工具,如eclipse、MyEclipse、intellijidea和netbean。但是,您也可以使用这些。原因不推荐,不方便您了解java…

    2022年7月8日
    22

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号