http://blog.sina.com.cn/s/blog_aed5bd1d0102vid7.html
1.多项式拟合范例:
import matplotlib.pyplot as plt import numpy as np x = np.arange(1, 17, 1) y = np.array([4.00, 6.40, 8.00, 8.80, 9.22, 9.50, 9.70, 9.86, 10.00, 10.20, 10.32, 10.42, 10.50, 10.55, 10.58, 10.60]) z1 = np.polyfit(x, y, 3) # 用3次多项式拟合 p1 = np.poly1d(z1) print(p1) # 在屏幕上打印拟合多项式 yvals=p1(x) # 也可以使用yvals=np.polyval(z1,x) plot1=plt.plot(x, y, '*',label='original values') plot2=plt.plot(x, yvals, 'r',label='polyfit values') plt.xlabel('x axis') plt.ylabel('y axis') plt.legend(loc=4) # 指定legend的位置,读者可以自己help它的用法 plt.title('polyfitting') plt.show() plt.savefig('p1.png')
2.指定函数拟合
# 使用非线性最小二乘法拟合 import matplotlib.pyplot as plt from scipy.optimize import curve_fit import numpy as np # 用指数形式来拟合 x = np.arange(1, 17, 1) y = np.array([4.00, 6.40, 8.00, 8.80, 9.22, 9.50, 9.70, 9.86, 10.00, 10.20, 10.32, 10.42, 10.50, 10.55, 10.58, 10.60]) def func(x,a,b): return a*np.exp(b/x) popt, pcov = curve_fit(func, x, y) a=popt[0] # popt里面是拟合系数,读者可以自己help其用法 b=popt[1] yvals=func(x,a,b) plot1=plt.plot(x, y, '*',label='original values') plot2=plt.plot(x, yvals, 'r',label='curve_fit values') plt.xlabel('x axis') plt.ylabel('y axis') plt.legend(loc=4) # 指定legend的位置,读者可以自己help它的用法 plt.title('curve_fit') plt.show() plt.savefig('p2.png')
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。
发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/119599.html原文链接:https://javaforall.net