优化SQLServer——表和分区索引(二)

优化SQLServer——表和分区索引(二)

简介

    之前一篇简单的介绍了语法和一些基本的概念,隔了一段时间,觉得有必要细致的通过实例来总结一下这部分内容。如之前所说,分区就是讲大型的对象(表)分成更小的块来管理,基本单位是行。这也就产生了很大优势, 比如在数据库维护备份还原操作的时候,比如在大量用户访问能导致死锁的时候等等。

接下来我们通过大量实例从分区到展示分区的效果以及一些实际案例来提高对这部分知识的理解。

–******************
–1.创建分区函数
–******************

–Create the partition function: dailyPF
DECLARE @StartDay DATE=DATEADD(dd,-3,CAST(SYSDATETIME() AS DATE));
CREATE PARTITION FUNCTION DailyPF (DATETIME2(0))
    AS RANGE RIGHT FOR VALUES
    (@StartDay, DATEADD(dd,1,@StartDay), DATEADD(dd,2,@StartDay), 
        DATEADD(dd,3,@StartDay), DATEADD(dd,4,@StartDay) );
GO

范围分区函数指定范围的边界,left和right关键字指定当数据库引擎按照剩余从左到右对区间值进行排序是,边界值属于那一边,默认为left。分区范围不能有间隔。

–******************
–2. 创建文件组

–******************

ALTER DATABASE PartitionThis ADD FILEGROUP DailyFG1
GO
ALTER DATABASE PartitionThis ADD FILEGROUP DailyFG2
GO
ALTER DATABASE PartitionThis ADD FILEGROUP DailyFG3
GO
ALTER DATABASE PartitionThis ADD FILEGROUP DailyFG4
GO
ALTER DATABASE PartitionThis ADD FILEGROUP DailyFG5
GO
ALTER DATABASE PartitionThis ADD FILEGROUP DailyFG6
GO

这里我们建立6个文件组,同时也可以为文件组创建文件,

创建好的文件和文件组文件

接下来我为文件组创建分区方案:

 

–******************
–3. 创建分区架构
–******************


CREATE PARTITION SCHEME DailyPS
    AS PARTITION DailyPF
    TO (DailyFG1, DailyFG2, DailyFG3, DailyFG4, DailyFG5, DailyFG6);

 

–******************
–4. 在分区架构上建表
–******************

if OBJECT_ID(‘OrdersDaily’,’U’) is null
CREATE TABLE OrdersDaily (
    OrderDate DATETIME2(0) NOT NULL,
    OrderId int IDENTITY NOT NULL,
    OrderName nvarchar(256) NOT NULL
) on DailyPS(OrderDate)
GO

这里我们将分区函数映射到单个文件组里面,调用我们之前建立的分区函数即可。然后接着创建表在分区文件上,同时应用分区函数在

OrderDate时间上。这里我们还需要插入一部分测试数据便于观察,同时创建一个架构便于查询分区

–*******************************
–创建架构
–*******************************

–Create a schema for “partition helper” objects
CREATE SCHEMA [ph] AUTHORIZATION dbo;
GO

–插入测试数据
INSERT OrdersDaily(OrderDate, OrderName)
SELECT DATEADD(ss, t.N, DATEADD(dd,-3,CAST(CAST(SYSDATETIME() AS DATE) AS DATETIME2(0)))) AS OrderDate,
    CASE WHEN t.N % 3 = 0 THEN ‘Robot’ WHEN t.N % 4 = 0 THEN ‘Badger’  ELSE ‘Pen’ END AS OrderName
FROM ph.tally AS t–tally是一个1到10万自增长的表,只有一个字段 N

WHERE N < = 1000;
   

INSERT OrdersDaily(OrderDate, OrderName)
SELECT DATEADD(ss, t.N, DATEADD(dd,-2,CAST(CAST(SYSDATETIME() AS DATE) AS DATETIME2(0)))) AS OrderDate,
    CASE WHEN t.N % 3 = 0 THEN ‘Flying Monkey’ WHEN t.N % 4 = 0 THEN ‘Junebug’  ELSE ‘Pen’ END AS OrderName
FROM ph.tally AS t
WHERE N < = 2000;

INSERT OrdersDaily(OrderDate, OrderName)
SELECT DATEADD(ss, t.N, DATEADD(dd,-1,CAST(CAST(SYSDATETIME() AS DATE) AS DATETIME2(0)))) AS OrderDate,
    CASE WHEN t.N % 2 = 0 THEN ‘Turtle’ WHEN t.N % 5 = 0 THEN ‘Eraser’  ELSE ‘Pen’ END AS OrderName
FROM ph.tally AS t
WHERE N < = 3000;

INSERT OrdersDaily(OrderDate, OrderName)
SELECT DATEADD(ss, t.N, CAST(CAST(SYSDATETIME() AS DATE) AS DATETIME2(0))) AS OrderDate,
    CASE WHEN t.N % 3 = 0 THEN ‘Lasso’ WHEN t.N % 2 = 0 THEN ‘Cattle Prod’  ELSE ‘Pen’ END AS OrderName
FROM ph.tally AS t
WHERE N < = 4000;
GO

随即在创建相关的索引

–******************
–7. 创建索引
–******************
–添加聚集索引
ALTER TABLE OrdersDaily
ADD CONSTRAINT PKOrdersDaily
    PRIMARY KEY CLUSTERED(OrderDate,OrderId)
GO

–对齐索引

CREATE NONCLUSTERED INDEX NCOrderIdOrdersDaily
    ON OrdersDaily(OrderId)
GO

–非对齐索引
CREATE NONCLUSTERED INDEX NCOrderNameOrdersDailyNonAligned
    ON OrdersDaily(OrderName) ON [PRIMARY]
GO

此时建立分区文件数据等条件后,我们可以看一下相应的文件及数据的情况,可以同过如下DMV来查看

SELECT  SCHEMA_NAME(so.schema_id) AS schema_name ,
        OBJECT_NAME(p.object_id) AS object_name ,
        p.partition_number ,
        p.data_compression_desc ,
        dbps.row_count ,
        dbps.reserved_page_count * 8 / 1024. AS reserved_mb ,
        si.index_id ,
        CASE WHEN si.index_id = 0 THEN ‘(heap!)’
                ELSE si.name
        END AS index_name ,
        si.is_unique ,
        si.data_space_id ,
        mappedto.name AS mapped_to_name ,
        mappedto.type_desc AS mapped_to_type_desc ,
        partitionds.name AS partition_filegroup ,
        pf.name AS pf_name ,
        pf.type_desc AS pf_type_desc ,
        pf.fanout AS pf_fanout ,
        pf.boundary_value_on_right ,
        ps.name AS partition_scheme_name ,
        rv.value AS range_value
FROM    sys.partitions p
JOIN    sys.objects so
        ON p.object_id = so.object_id
            AND so.is_ms_shipped = 0
LEFT JOIN sys.dm_db_partition_stats AS dbps
        ON p.object_id = dbps.object_id
            AND p.partition_id = dbps.partition_id
JOIN    sys.indexes si
        ON p.object_id = si.object_id
            AND p.index_id = si.index_id
LEFT JOIN sys.data_spaces mappedto
        ON si.data_space_id = mappedto.data_space_id
LEFT JOIN sys.destination_data_spaces dds
        ON si.data_space_id = dds.partition_scheme_id
            AND p.partition_number = dds.destination_id
LEFT JOIN sys.data_spaces partitionds
        ON dds.data_space_id = partitionds.data_space_id
LEFT JOIN sys.partition_schemes AS ps
        ON dds.partition_scheme_id = ps.data_space_id
LEFT JOIN sys.partition_functions AS pf
        ON ps.function_id = pf.function_id
LEFT JOIN sys.partition_range_values AS rv
        ON pf.function_id = rv.function_id
            AND dds.destination_id = CASE pf.boundary_value_on_right
                                        WHEN 0 THEN rv.boundary_id
                                        ELSE rv.boundary_id + 1
                                    END

查询结果如图:

分区表

可以发现按照日期的分布产生了不同文件组的数据插入到了不同的文件里面和索引里面了。

接下来我们通过分区切换来更好的理解分区的意义,首先要建立新的文件组(DailyF7)来切换分区,同时创建一个分区表OrdersDailyLoad,并向这个表里面插入5000条数据创建索引等以上的操作单独对此表进行一遍重复操作,来实现对新分区的新标的对齐。注意5000条数据一定要在指定范围内,比如使用check约束使数据在11.30-12.1日内的数据。

 

代码:

在切换之前我们一定要禁用或者删除掉这个分区的对其的索引
ALTER INDEX NCOrderNameOrdersDailyNonAligned ON OrdersDaily DISABLE;
GO
ALTER TABLE OrdersDailyLoad
SWITCH TO OrdersDaily PARTITION 6;
GO

如图,分区切换后文件组6中变为了5000条数据,而7中变为了空。

image

如果需要切换回来执行

ALTER TABLE PARTITION 6

SWITCH TO OrdersDaily OrdersDailyLoad ;

GO

如果需要合并分区

ALTER PARTITION FUNCTION DailyPF ()
        MERGE RANGE (‘2015-11-27 00:00:00.000’)

结果:此界点两个分区将合并为一个

 

 

 

总结:

           通过以上代码和实例的展示,我们能了解如何使用分区。同时我们要知道分区的意义。但是要知道分区也是一把双刃剑,它可以看做是一个性能选项、管理选项、可扩展工具,在提高数据查询、维护性能的同时也对数据库的备份还原策略、索引的维护、并发性以及变分区锁等有副作用,所以具体是否选用表分区要根据实际情况来判断,然后推荐一个工具(DataBase Tuning Adcisor)运行工作负载来提供是否分区的建议。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/119737.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Java设计模式之结构型:享元模式

    Java设计模式之结构型:享元模式

    2021年10月4日
    43
  • oracle 11与plsql安装教程

    oracle 11与plsql安装教程1、下载oracle登录oracle官网,下载oracle11标准版,11版本的两个文件都要下载,下载之前先接受许可,地址是https://www.oracle.com/technetwork/database/enterprise-edition/downloads/index.html。下载完毕后将两个文件解压在一个目录下。2、安装安装过程中会修改注册表,所以先关闭杀…

    2022年6月17日
    43
  • sql server 日期转字符串_db2 日期转字符串

    sql server 日期转字符串_db2 日期转字符串Whileworkingwithrawdata,youmayfrequentlyfacedatevaluesstoredastext.Convertingthesevaluestoadatedatatypeisveryimportantsincedatesmaybemorevaluableduringanalysis.In…

    2022年10月8日
    2
  • 智能小车设计思路简述

    智能小车设计思路简述简单的说就是把微控制器(单片机)的管脚和外设的引脚用杜邦线相连,就可以使用微控制器通过自身管脚给外设发送信号,以实现外设的运行。能力较强的可以自己设计一块电路板,把微控制器和一部分外设直接插在板子上面的排座上,减少杜邦线的使用(使用杜邦线太多会比较乱),还可以在板子上设计一些必要的电路如稳压电路、按键电路、电机驱动电路,这些电路网上也能买到。其实小车后期前进后退、循迹、避障的功能是否顺滑,大部分取决于代码的编写,有的时候还需要在代码中加入算法。智能小车的设计主要包含两部分,硬件部分和软件部分。……

    2022年10月9日
    2
  • linux vim常用命令_linuxvi编辑器命令

    linux vim常用命令_linuxvi编辑器命令1.vi模式a)一般模式:vi处理文件时,一进入该文件,就是一般模式了.b)编辑模式:在一般模式下可以进行删除,复制,粘贴等操作,却无法进行编辑操作。等按下‘i,I,o,O,a,A,r,R’等字母之后才能进入编辑模式.通常在linux中,按下上述字母时,左下方会出现’INSERT’或者‘REPLACE’字样,才可以输入任何文字到文件中.要回到一般模式,按下[ESC]键即可.c)命令行模…

    2022年9月22日
    2
  • Gmapping建图

    Gmapping建图Gmapping实战前文中,我们总共做了以下几件事:完成了基于ros小车框架安装。完成了小车下位机的安装。完成了上位机安装,并连接到ros系统,可以发布odom话题,使用键盘控制gmapping数据集测试。激光雷达选型与安装。接下来我们来完成使用gmapping的建图与导航工作。首先下载安装激光雷达的驱动程序,当然只针对我买的这一款,不是做广告,这家的技术售后简直就是垃圾,唯一…

    2022年6月25日
    36

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号