数据结构之最小生成树Prim算法建议收藏

普里姆算法介绍普里姆(Prim)算法,是用来求加权连通图的最小生成树算法基本思想:对于图G而言,V是所有顶点的集合;现在,设置两个新的集合U和T,其中U用于存放G的最小生成树中的顶点,T存放G的最

大家好,又见面了,我是全栈君,今天给大家准备了Idea注册码。

全栈程序员社区此处内容已经被作者隐藏,请输入验证码查看内容
验证码:
请关注本站微信公众号,回复“验证码”,获取验证码。在微信里搜索“全栈程序员社区”或者“www_javaforall_cn”或者微信扫描右侧二维码都可以关注本站微信公众号。

普里姆算法介绍

  普里姆(Prim)算法,是用来求加权连通图的最小生成树算法

  基本思想:对于图G而言,V是所有顶点的集合;现在,设置两个新的集合U和T,其中U用于存放G的最小生成树中的顶点,T存放G的最小生成树中的边。 从所有uЄU,vЄ(V-U) (V-U表示出去U的所有顶点)的边中选取权值最小的边(u, v),将顶点v加入集合U中,将边(u, v)加入集合T中,如此不断重复,直到U=V为止,最小生成树构造完毕,这时集合T中包含了最小生成树中的所有边。

数据结构之最小生成树Prim算法建议收藏

代码实现

1. 思想逻辑

  (1)以无向图的某个顶点(A)出发,计算所有点到该点的权重值,若无连接取最大权重值#define INF    (~(0x1<<31))

  (2)找到与该顶点最小权重值的顶点(B),再以B为顶点计算所有点到改点的权重值,依次更新之前的权重值,注意权重值为0或小于当前权重值的不更新,因为1是一当找到最小权重值的顶点时,将权重值设为了0,2是会出现无连接的情况。

  (3)将上述过程一次循环,并得到最小生成树。

2. Prim算法

// Prim最小生成树
void Prim(int nStart)
{
    int i = 0;
    int nIndex=0;         // prim最小树的索引,即prims数组的索引 
    char cPrims[MAX];     // prim最小树的结果数组 
    int weights[MAX];    // 顶点间边的权值
    
    cPrims[nIndex++] = m_mVexs[nStart].data;

    // 初始化"顶点的权值数组",
    // 将每个顶点的权值初始化为"第start个顶点"到"该顶点"的权值。
    for (i = 0; i < m_nVexNum; i++)
    {
        weights[i] = GetWeight(nStart, i);
    }

    for (i = 0; i < m_nVexNum; i ++)
    {
        if (nStart == i)
        {
            continue;
        }
        
        int min = INF;
        int nMinWeightIndex = 0;
        for (int k = 0; k < m_nVexNum; k ++)
        {
            if (weights[k]!= 0 && weights[k] < min)
            {
                min = weights[k];
                nMinWeightIndex = k;
            }
        }

        // 找到下一个最小权重值索引
        cPrims[nIndex++] = m_mVexs[nMinWeightIndex].data;
        // 以找到的顶点更新其他点到该点的权重值
        weights[nMinWeightIndex]=0;
        int nNewWeight = 0;
        for (int ii = 0; ii < m_nVexNum; ii++)
        {
            nNewWeight = GetWeight(nMinWeightIndex, ii);
            // 该位置需要特别注意
            if (0 != weights[ii] && weights[ii] > nNewWeight)
            {
                weights[ii] = nNewWeight;
            }
        }
    }
    // 计算最小生成树的权重值
    int nSum = 0;
    for (i = 1; i < nIndex; i ++)
    {
        int min = INF;
        int nVexsIndex = GetVIndex(cPrims[i]);
        for (int kk = 0; kk < i; kk ++)
        {
            int nNextVexsIndex = GetVIndex(cPrims[kk]);
            int nWeight = GetWeight(nVexsIndex, nNextVexsIndex);
            if (nWeight < min)
            {
                min = nWeight;
            }
        }
        nSum += min;
    }

    // 打印最小生成树 
    cout << "PRIM(" << m_mVexs[nStart].data  <<")=" << nSum << ": "; 
    for (i = 0; i < nIndex; i++) 
        cout << cPrims[i] << " "; 
    cout << endl; 

}

3. 全部实现

数据结构之最小生成树Prim算法建议收藏
数据结构之最小生成树Prim算法建议收藏

#include "stdio.h"
#include <iostream>
using namespace std;

#define MAX 100
#define INF         (~(0x1<<31))        // 最大值(即0X7FFFFFFF)

class EData
{
public:
    EData(char start, char end, int weight) : nStart(start), nEnd(end), nWeight(weight){}
    
    char nStart;
    char nEnd;
    int nWeight;
};
//
struct ENode
{
    int nVindex;  // 该边所指的顶点的位置
    int nWeight;  // 边的权重
    ENode *pNext; // 指向下一个边的指针
};

struct VNode
{
    char data;  // 顶点信息
    ENode *pFirstEdge; // 指向第一条依附该顶点的边
};

// 无向邻接表
class listUDG
{
public:
    listUDG(){};
    listUDG(char *vexs, int vlen, EData **pEData, int elen)
    {
        m_nVexNum = vlen;
        m_nEdgNum = elen;

        // 初始化"邻接表"的顶点
        for (int i = 0; i < vlen; i ++)
        {
            m_mVexs[i].data = vexs[i];
            m_mVexs[i].pFirstEdge = NULL;
        }

        char c1,c2;
        int p1,p2;
        ENode *node1, *node2;
        // 初始化"邻接表"的边
        for (int j = 0; j < elen; j ++)
        {
            // 读取边的起始顶点和结束顶点
            c1 = pEData[j]->nStart;
            c2 = pEData[j]->nEnd;
            p1 = GetVIndex(c1);
            p2 = GetVIndex(c2);

            node1 = new ENode();
            node1->nVindex = p2;
            node1->nWeight = pEData[j]->nWeight;
            if (m_mVexs[p1].pFirstEdge == NULL)
            {
                m_mVexs[p1].pFirstEdge = node1;
            }
            else
            {
                LinkLast(m_mVexs[p1].pFirstEdge, node1);
            }

            node2 = new ENode();
            node2->nVindex = p1;
            node2->nWeight = pEData[j]->nWeight;
            if (m_mVexs[p2].pFirstEdge == NULL)
            {
                m_mVexs[p2].pFirstEdge = node2;
            }
            else
            {
                LinkLast(m_mVexs[p2].pFirstEdge, node2);
            }
        }

    }
    ~listUDG()
    {
        ENode *pENode = NULL;
        ENode *pTemp = NULL;
        for (int i = 0; i < m_nVexNum; i ++)
        {
            pENode = m_mVexs[i].pFirstEdge;
            if (pENode != NULL)
            {
                pTemp = pENode;
                pENode = pENode->pNext;

                delete pTemp;
            }
            delete pENode;
        }
    }

    void PrintUDG()
    { 
        ENode *pTempNode = NULL;
        cout << "邻接无向表:" << endl;
        for (int i = 0; i < m_nVexNum; i ++)
        {
            cout << "顶点:" << GetVIndex(m_mVexs[i].data)<< "-" << m_mVexs[i].data<< "->";
            pTempNode = m_mVexs[i].pFirstEdge;
            while (pTempNode)
            {
                cout <<pTempNode->nVindex << "->";
                pTempNode = pTempNode->pNext;
            }
            cout << endl;
        }
    }

    // Prim最小生成树
    void Prim(int nStart)
    {
        int i = 0;
        int nIndex=0;         // prim最小树的索引,即prims数组的索引 
        char cPrims[MAX];     // prim最小树的结果数组 
        int weights[MAX];    // 顶点间边的权值
        
        cPrims[nIndex++] = m_mVexs[nStart].data;

        // 初始化"顶点的权值数组",
        // 将每个顶点的权值初始化为"第start个顶点"到"该顶点"的权值。
        for (i = 0; i < m_nVexNum; i++)
        {
            weights[i] = GetWeight(nStart, i);
        }

        for (i = 0; i < m_nVexNum; i ++)
        {
            if (nStart == i)
            {
                continue;
            }
            
            int min = INF;
            int nMinWeightIndex = 0;
            for (int k = 0; k < m_nVexNum; k ++)
            {
                if (weights[k]!= 0 && weights[k] < min)
                {
                    min = weights[k];
                    nMinWeightIndex = k;
                }
            }

            // 找到下一个最小权重值索引
            cPrims[nIndex++] = m_mVexs[nMinWeightIndex].data;
            // 以找到的顶点更新其他点到该点的权重值
            weights[nMinWeightIndex]=0;
            int nNewWeight = 0;
            for (int ii = 0; ii < m_nVexNum; ii++)
            {
                nNewWeight = GetWeight(nMinWeightIndex, ii);
                // 该位置需要特别注意
                if (0 != weights[ii] && weights[ii] > nNewWeight)
                {
                    weights[ii] = nNewWeight;
                }
            }
        }
        // 计算最小生成树的权重值
        int nSum = 0;
        for (i = 1; i < nIndex; i ++)
        {
            int min = INF;
            int nVexsIndex = GetVIndex(cPrims[i]);
            for (int kk = 0; kk < i; kk ++)
            {
                int nNextVexsIndex = GetVIndex(cPrims[kk]);
                int nWeight = GetWeight(nVexsIndex, nNextVexsIndex);
                if (nWeight < min)
                {
                    min = nWeight;
                }
            }
            nSum += min;
        }

        // 打印最小生成树 
        cout << "PRIM(" << m_mVexs[nStart].data  <<")=" << nSum << ": "; 
        for (i = 0; i < nIndex; i++) 
            cout << cPrims[i] << " "; 
        cout << endl; 
    }
private:
    // 获取<start, end>的权值,若start和end不是连接的,则返回无穷大
    int GetWeight(int start, int end)
    {
        if (start == end)
        {
            return 0;
        }
        ENode *pTempNode = m_mVexs[start].pFirstEdge;
        while (pTempNode)
        {
            if (end == pTempNode->nVindex)
            {
                return pTempNode->nWeight;
            }
            pTempNode = pTempNode->pNext;
        }

        return INF;
    }

    // 返回顶点的索引
    int GetVIndex(char ch)
    {
        int i = 0;
        for (; i < m_nVexNum; i ++)
        {
            if (m_mVexs[i].data == ch)
            {
                return i;
            }
        }
        return -1;
    }

    void LinkLast(ENode *pFirstNode, ENode *pNode)
    {
        if (pFirstNode == NULL || pNode == NULL)
        {
            return;
        }
        ENode *pTempNode = pFirstNode;
        while (pTempNode->pNext != NULL)
        {
            pTempNode = pTempNode->pNext;
        }

        pTempNode->pNext = pNode;
    }

private:
    int m_nVexNum;   // 顶点数目
    int m_nEdgNum;   // 边数目
    VNode m_mVexs[MAX];
    VNode m_PrimVexs[MAX];
};

void main()
{
    char vexs[] = {'A', 'B', 'C', 'D', 'E', 'F', 'G'}; 
    //
    EData *edges[] = { 
               // 起点 终点 权 
        new EData('A', 'B', 12),  
        new EData('A', 'F', 16),  
        new EData('A', 'G', 14),  
        new EData('B', 'C', 10),  
        new EData('B', 'F',  7),  
        new EData('C', 'D',  3),  
        new EData('C', 'E',  5),  
        new EData('C', 'F',  6),  
        new EData('D', 'E',  4),  
        new EData('E', 'F',  2),  
        new EData('E', 'G',  8),  
        new EData('F', 'G',  9)
    };
    int vlen = sizeof(vexs)/sizeof(vexs[0]); 
    int elen = sizeof(edges)/sizeof(edges[0]); 
    listUDG* pG = new listUDG(vexs, vlen, edges, elen); 

    pG->PrintUDG();   // 打印图 
    pG->Prim(0);

    for (int i = 0; i < elen; i ++)
    {
        delete edges[i];
    }
    return; 
}

View Code

数据结构之最小生成树Prim算法建议收藏

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/120149.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • UART和USART的区别

    UART和USART的区别UART定义  UART是一种通用串行数据总线,用于异步通信。该总线双向通信,可以实现全双工传输和接收。在嵌入式设计中,UART用于主机与辅助设备通信,如汽车音响与外接AP之间的通信,与PC机通信包括与监控调试器和其它器件,如EEPROM通信。  通用异步收发传输器(UniversalAsynchronousReceiver/Transmitter),通常称作UART,是一种异步收发传输…

    2022年5月12日
    41
  • JS正则表达式验证是否为11位有效手机号码,

    JS正则表达式验证是否为11位有效手机号码,

    2021年10月19日
    116
  • 可以识别图片上的文字的小程序

    可以识别图片上的文字的小程序微信上的小程序相信大家都不陌生,近年来,微信小程序从“跳一跳”之后,越发火了。由于小程序的出现,微信上的功能也逐渐增加了,今天就给大家介绍一个小程序,比较实用,它可以快速识别图片上的文字,这个小程序呢就叫“迅捷文字识别”。这是一个比较智能的文字识别的小程序,它可以将识别出来的字汉英互译,还可以直接拍照翻译,接下来就给大家介绍一下这个小程序的操作方法。1.首先,我们现在微信上找到这个程序,点…

    2022年5月29日
    41
  • thread count_ThreadPool

    thread count_ThreadPoolThreadPool类提供一个线程池,该线程池可用于发送工作项、处理异步I/O、代表其他线程等待以及处理计时器。许多应用程序创建的线程都要在休眠状态中消耗大量时间,以等待事件发生。其他线程可能进入休眠状态,只被定期唤醒以轮询更改或更新状态信息。线程池通过为应用程序提供一个由系统管理的辅助线程池使您可以更为有效地使用线程。一个线程监视排到线程池的若干个等待操作的状态。当一个等待操作

    2022年9月24日
    0
  • 创建MySQL从库

    创建MySQL从库

    2022年2月4日
    39
  • Android studio开发-第一个入门例子(十分详细)

    Android studio开发-第一个入门例子(十分详细)                            举个栗子实现功能:可以通过页面输入改变要显示的字符,然后通过按钮可以实现显示字符的放大功能。最终如下:一共四个控件:一个text输入,一个text显示,一个输入修改确认按钮,一个放大按钮步骤:1、建立项目   file-new-newproject新建一个项目…

    2025年7月4日
    0

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号