⛽zipkin2.reporter.InMemoryReporterMetrics导致服务器CPU100%及应用OOM问题排查和解决「建议收藏」

⛽InMemoryReporterMetrics导致线上CPU100%及服务OOM排查和解决下面是我遇到的问题,以及一些简单的排查思路,如有不对的地方,欢迎留言讨论。如果你已经遇到 InMemoryReporterMetrics 导致的OOM问题,并已经解决,则可忽略此文。若你对CPU100%以及线上问题OOM排查不清楚,可以浏览下本文。问题现象【告警通知-应用异常告警】简单看下告警的信息:拒绝连接,不要太在意马赛克。问题排查通过告警信息,知道是哪一台服务器的哪个服务出现问题。首先登录服

大家好,又见面了,我是全栈君。

⛽zipkin2.reporter.InMemoryReporterMetrics导致服务器CPU100%及应用OOM问题排查和解决

下面是我遇到的问题,以及一些简单的排查思路,如有不对的地方,欢迎留言讨论。
如果你已经遇到 InMemoryReporterMetrics 导致的OOM问题,并已经解决,则可忽略此文。若你对CPU100%以及线上问题OOM排查不清楚,可以浏览下本文。

问题现象

【告警通知-应用异常告警】
⛽zipkin2.reporter.InMemoryReporterMetrics导致服务器CPU100%及应用OOM问题排查和解决「建议收藏」
简单看下告警的信息:拒绝连接,反正就是服务有问题了,请不要太在意马赛克。

环境说明

Spring Cloud F版。

项目中默认使用 spring-cloud-sleuth-zipkin 依赖得到 zipkin-reporter。分析的版本发现是 zipkin-reporter版本是 2.7.3 。

<dependency>
	<groupId>org.springframework.cloud</groupId>
	<artifactId>spring-cloud-sleuth-zipkin</artifactId>
</dependency>
		
版本: 2.0.0.RELEASE

在这里插入图片描述

问题排查

通过告警信息,知道是哪一台服务器的哪个服务出现问题。首先登录服务器进行检查。

1、检查服务状态和验证健康检查URL是否ok

这一步可忽略/跳过,与实际公司的的健康检查相关,不具有通用性。

①查看服务的进程是否存在。

ps -ef | grep 服务名
ps -aux | grep 服务名

②查看对应服务健康检查的地址是否正常,检查 ip port 是否正确

是不是告警服务检查的url配置错了,一般这个不会出现问题

③验证健康检查地址

这个健康检查地址如:http://192.168.1.110:20606/serviceCheck
检查 IP 和 Port 是否正确。

# 服务正常返回结果
curl http://192.168.1.110:20606/serviceCheck
{"appName":"test-app","status":"UP"}

# 服务异常,服务挂掉
curl http://192.168.1.110:20606/serviceCheck
curl: (7) couldn't connect to host

2、查看服务的日志

查看服务的日志是否还在打印,是否有请求进来。查看发现服务OOM了。

在这里插入图片描述

tips:

java.lang.OutOfMemoryError GC overhead limit exceeded
oracle官方给出了这个错误产生的原因和解决方法:
Exception in thread thread_name: java.lang.OutOfMemoryError: GC Overhead limit exceeded
Cause: The detail message “GC overhead limit exceeded” indicates that the garbage collector is running all the time and Java program is making very slow progress. After a garbage collection, if the Java process is spending more than approximately 98% of its time doing garbage collection and if it is recovering less than 2% of the heap and has been doing so far the last 5 (compile time constant) consecutive garbage collections, then a java.lang.OutOfMemoryError is thrown. This exception is typically thrown because the amount of live data barely fits into the Java heap having little free space for new allocations.
Action: Increase the heap size. The java.lang.OutOfMemoryError exception for GC Overhead limit exceeded can be turned off with the command line flag -XX:-UseGCOverheadLimit.

原因:
大概意思就是说,JVM花费了98%的时间进行垃圾回收,而只得到2%可用的内存,频繁的进行内存回收(最起码已经进行了5次连续的垃圾回收),JVM就会曝出ava.lang.OutOfMemoryError: GC overhead limit exceeded错误。
在这里插入图片描述

上面tips来源:java.lang.OutOfMemoryError GC overhead limit exceeded原因分析及解决方案

3、检查服务器资源占用状况

查询系统中各个进程的资源占用状况,使用 top 命令。够查看出有一个进程为 11441 的进程 CPU 使用率达到300%,如下截图:

在这里插入图片描述

然后 查询这个进程下所有线程的CPU使用情况:

top -H -p pid
保存文件: top -H -n 1 -p pid > /tmp/pid_top.txt

# top -H -p 11441
PID USER      PR  NI  VIRT  RES  SHR S %CPU %MEM    TIME+  COMMAND
11447 test    20   0 4776m 1.6g  13m R 92.4 20.3  74:54.19 java
11444 test    20   0 4776m 1.6g  13m R 91.8 20.3  74:52.53 java
11445 test    20   0 4776m 1.6g  13m R 91.8 20.3  74:50.14 java
11446 test    20   0 4776m 1.6g  13m R 91.4 20.3  74:53.97 java
....

查看 PID: 11441 下面的线程,发现有几个线程占用cpu较高。

4、保存堆栈数据

1、打印系统负载快照
top -b -n 2 > /tmp/top.txt
top -H -n 1 -p pid > /tmp/pid_top.txt

2、cpu升序打印进程对应线程列表
ps -mp -o THREAD,tid,time | sort -k2r > /tmp/进程号_threads.txt

3、看tcp连接数 (最好多次采样)
lsof -p 进程号 > /tmp/进程号_lsof.txt
lsof -p 进程号 > /tmp/进程号_lsof2.txt

4、查看线程信息 (最好多次采样)
jstack -l 进程号 > /tmp/进程号_jstack.txt
jstack -l 进程号 > /tmp/进程号_jstack2.txt
jstack -l 进程号 > /tmp/进程号_jstack3.txt

5、查看堆内存占用概况
jmap -heap 进程号 > /tmp/进程号_jmap_heap.txt

6、查看堆中对象的统计信息
jmap -histo 进程号 | head -n 100 > /tmp/进程号_jmap_histo.txt

7、查看GC统计信息
jstat -gcutil 进程号 > /tmp/进程号_jstat_gc.txt

8、生产对堆快照Heap dump
jmap -dump:format=b,file=/tmp/进程号_jmap_dump.hprof 进程号

堆的全部数据,生成的文件较大。

jmap -dump:live,format=b,file=/tmp/进程号_live_jmap_dump.hprof 进程号

dump:live,这个参数表示我们需要抓取目前在生命周期内的内存对象,也就是说GC收不走的对象,一般用这个就行。

拿到出现问题的快照数据,然后重启服务。

问题分析

根据上述的操作,已经获取了出现问题的服务的GC信息、线程堆栈、堆快照等数据。下面就进行分析,看问题到底出在哪里。

1、分析cpu占用100%的线程

转换线程ID

从jstack生成的线程堆栈进程分析。

将 上面线程ID 为
11447 :0x2cb7
11444 :0x2cb4
11445 :0x2cb5
11446 :0x2cb6
转为 16进制(jstack命令输出文件记录的线程ID是16进制)。
第一种转换方法 :

$ printf “0x%x” 11447
“0x2cb7”

第二种转换方法 : 在转换的结果加上 0x即可。

在这里插入图片描述

查找线程堆栈

$ cat 11441_jstack.txt | grep "GC task thread"
"GC task thread#0 (ParallelGC)" os_prio=0 tid=0x00007f971401e000 nid=0x2cb4 runnable
"GC task thread#1 (ParallelGC)" os_prio=0 tid=0x00007f9714020000 nid=0x2cb5 runnable
"GC task thread#2 (ParallelGC)" os_prio=0 tid=0x00007f9714022000 nid=0x2cb6 runnable
"GC task thread#3 (ParallelGC)" os_prio=0 tid=0x00007f9714023800 nid=0x2cb7 runnable

发现这些线程都是在做GC操作。

2、分析生成的GC文件

  S0     S1     E      O      M     CCS    YGC     YGCT    FGC    FGCT     GCT   
  0.00   0.00 100.00  99.94  90.56  87.86    875    9.307  3223 5313.139 5322.446
  • S0:幸存1区当前使用比例
  • S1:幸存2区当前使用比例
  • E:Eden Space(伊甸园)区使用比例
  • O:Old Gen(老年代)使用比例
  • M:元数据区使用比例
  • CCS:压缩使用比例
  • YGC:年轻代垃圾回收次数
  • FGC:老年代垃圾回收次数
  • FGCT:老年代垃圾回收消耗时间
  • GCT:垃圾回收消耗总时间

FGC 十分频繁。

3、分析生成的堆快照

使用 Eclipse Memory Analyzer 工具。 下载地址: https://www.eclipse.org/mat/downloads.php

分析的结果:

在这里插入图片描述

在这里插入图片描述
看到堆积的大对象的具体内容:
在这里插入图片描述

问题大致原因,InMemoryReporterMetrics 引起的OOM。

zipkin2.reporter.InMemoryReporterMetrics @ 0xc1aeaea8
Shallow Size: 24 B Retained Size: 925.9 MB

也可以使用:Java内存Dump分析 进行分析,如下截图,功能没有MAT强大,有些功能需收费。
在这里插入图片描述

4、原因分析和验证

因为出现了这个问题,查看出现问题的这个服务 zipkin的配置,和其他服务没有区别。发现配置都一样。

然后看在试着对应的 zipkin 的jar包,发现出现问题的这个服务依赖的 zipkin版本较低。

有问题的服务的 zipkin-reporter-2.7.3.jar
其他没有问题的服务 依赖的包 : zipkin-reporter-2.8.4.jar

在这里插入图片描述


将有问题的服务依赖的包版本升级,在测试环境进行验证,查看堆栈快照发现没有此问题了。

原因探索

查 zipkin-reporter的 github:搜索 相应的资料
https://github.com/openzipkin/zipkin-reporter-java/issues?q=InMemoryReporterMetrics
找到此 下面这个issues:
https://github.com/openzipkin/zipkin-reporter-java/issues/139

在这里插入图片描述

修复代码和验证代码:
https://github.com/openzipkin/zipkin-reporter-java/pull/119/files

对比两个版本代码的差异:
在这里插入图片描述
简单的DEMO验证:

// 修复前的代码:
  private final ConcurrentHashMap<Throwable, AtomicLong> messagesDropped =
      new ConcurrentHashMap<Throwable, AtomicLong>();
// 修复后的代码:
  private final ConcurrentHashMap<Class<? extends Throwable>, AtomicLong> messagesDropped =
      new ConcurrentHashMap<>();

修复后使用 这个为key : Class<? extends Throwable> 替换 Throwable。

简单验证:

在这里插入图片描述

在这里插入图片描述

解决方案

将zipkin-reporter 版本进行升级即可。使用下面依赖配置,引入的 zipkin-reporter版本为 2.8.4 。

<!-- zipkin 依赖包 -->
<dependency>
  <groupId>io.zipkin.brave</groupId>
  <artifactId>brave</artifactId>
  <version>5.6.4</version>
</dependency>

小建议:配置JVM参数的时候还是加上下面参数,设置内存溢出的时候输出堆栈快照.

 -XX:+HeapDumpOnOutOfMemoryError 
 -XX:HeapDumpPath=path/filename.hprof 
 

参考文章

记一次sleuth发送zipkin异常引起的OOM
https://www.jianshu.com/p/f8c74943ccd8

彩蛋

附上:百度搜索还是有点坑

在这里插入图片描述

推荐阅读 : 一文学会Java死锁和CPU 100% 问题的排查技巧


谢谢你的阅读,如果您觉得这篇博文对你有帮助,请点赞或者喜欢,让更多的人看到!祝你每天开心愉快!


不管做什么,只要坚持下去就会看到不一样!在路上,不卑不亢!

博客首页 : https://aflyun.blog.csdn.net/

Java编程技术乐园:一个分享干货编程技术知识的公众号。

⛽zipkin2.reporter.InMemoryReporterMetrics导致服务器CPU100%及应用OOM问题排查和解决「建议收藏」

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/120940.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • BM3D算法介绍「建议收藏」

    BM3D算法介绍「建议收藏」论文名称:Imagedenoisingbysparse3Dtransform-domaincollaborativefiltering下载地址:https://webpages.tuni.fi/foi/GCF-BM3D/BM3D_TIP_2007.pdfhttps://webpages.tuni.fi/foi/GCF-BM3D/BM3D_TIP_2007.pdf目录基本原理FlowchartofBM3Dstep1step2FastAndEfficient.

    2022年5月30日
    42
  • 实时数据库简介和比较—PI

    实时数据库简介和比较—PI实时数据库是数据库系统发展的一个分支,它适用于处理不断更新的快速变化的数据及具有时间限制的事务处理。实时数据库技术是实时系统和数据库技术相结合的产物,实时数据库系统的主要内容包括:实时数据库模型;

    2022年8月3日
    38
  • 求delay函数的原理

    求delay函数的原理哪位大哥知道c语言delay函数的原理 

    2022年5月24日
    42
  • java链表排序方法_java链表排序

    java链表排序方法_java链表排序插入排序    对链表进行插入排序,是最简单的一种链表排序算法,用于插入排序是迭代的,所以每次只移动一个元素,直到所有元素可以形成一个有序的输出列表。    每次迭代中,插入排序只从输入数据中移除一个待排序的元素,找到它在序列中适当的位置,并将其插入。重复直到所有输入数据插入完为止。    插入排序的时间复杂度为O(N^2),空间复杂度为O(1)cla

    2022年10月9日
    4
  • 什么是跨域问题?跨域解决问题

    什么是跨域问题?跨域解决问题一 为什么会出现跨域问题 出于浏览器的同源策略限制 同源策略是一种约定 它是浏览器最核心也是最基本的安全功能 如果缺少了同源策略 则浏览器的正常的功能可能会受到影响 跨域收是 Web 是构建在同源策略基础上的 浏览器只是针对同源策略的一种实现 同源策略会阻止一个域的 JavaScript 脚本和另一个域的内容进行交互 所谓同源 即指同一个域 就是两个页面具备同样的协议 protocol 主机 host 和端口号 port 跨域报错的原因请求是跨域的 并不一定会报错 普通的图片请求 css 文件请求是不

    2025年6月12日
    3
  • pycharm安装pyqt5-tools_怎么配置pycharm的环境

    pycharm安装pyqt5-tools_怎么配置pycharm的环境快速配置pyqt5,在pycharm上进行配置。步骤详细

    2022年8月28日
    5

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号