八皇后算法解析[通俗易懂]

八皇后算法解析[通俗易懂]今天研究力扣的一道题死活写不出来对应的算法,没办法自己算法基础太差。于是看了下答案,发现使用什么回溯算法,菜鸟表示平时开发期间写的最复杂的程序就是写了两层for循环,已经很牛逼了有木有?这个回溯算法什么鬼?于是乎百度了下,算是了解了回溯算法是什么玩意儿。这里分析一波八皇后算法来加深一下理解。https://blog.csdn.net/microopithecus/article/details/…

大家好,又见面了,我是你们的朋友全栈君。

今天研究力扣的一道题死活写不出来对应的算法,没办法自己算法基础太差。于是看了下答案,发现使用什么回溯算法,菜鸟表示平时开发期间写的最复杂的程序就是写了两层for循环,已经很牛逼了有木有?这个回溯算法什么鬼?于是乎百度了下,算是了解了回溯算法是什么玩意儿。这里分析一波八皇后算法来加深一下理解。

八皇后算法描述如下:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法!
在这里插入图片描述

下面来分析一波,假设此时我们想要在黑色方块位置放置一个皇后
在这里插入图片描述
如果一列一列的放置皇后的话,图中黑色位置能放置一个皇后的合法性条件为:
1、绿色线条经过的方格没有皇后 (不处于同一斜线)
2、红色线条经过的方格没有皇后 (不处于同一行)
3、紫色线条经过的方格没有皇后 (不处于同一斜线)

也就是说如果以黑色方块位置为参照原点:(0,0)坐标点,紫色和绿色两个线条分别是斜率为1和-1的两个函数,如下图:
紫色线所代表的函数是:y = -x;
绿色先所代表的函数是:y=x;
(横坐标是列,纵坐标为行,注意行从上到下递增)
在这里插入图片描述
凡是位于这两条函数线上的位置(点)以及横坐标(说明位于同一行)都不能有皇后

所以假设某一列皇后的位置用行来记录,比如queen[column] = row,意思是第column列的皇后的位置在第row行。
同行的逻辑很好判断,那么我们想要在黑色方块位置放置一个皇后,怎么判断前面几列是否在绿色线条和紫色线条上已经有了皇后呢?思路也很简单:
假设黑色方块的位置为n列,nRow行,假设位于m列的所在的行是否有皇后位于紫色线或者绿色上,那么就符合下面条件:

//假设此时即将在n列放置一个皇后,n>m

]//获取m列上皇后所在的行
int mRow = queen[m]
int nRow = queen[n];
//行的差值
int rowDiff = nRow - mRow;

//列的差值
int columnDiff = n-m;

上面代码中 rowDiff的绝对值等于columnDiff的绝对值的话,说明点位于y=x或者y=-x的函数线上:
在这里插入图片描述
就说明此时黑色方块的位置是不能放置皇后的,因为在紫色或者绿色线上已经有了皇后。

那么用代码来(currentColumn,curreentRow)是否可以放置皇后的方法如下

	/**
     * 判断当(currentRow,currentColumn)是否可以放置皇后
     * @param currentColumn 
     * @return
     */
    public boolean isLegal(int currentRow,int currentColumn) {
    	//遍历前面几列
    	for(int preColumn=0;preColumn<currentColumn;preColumn++) {
    		int row = queen[preColumn];
    		//说明在子preColumn的低currentRow已经有了皇后
    		if(row==currentRow) {
    			return false;
    		}
    		
    	    //行与行的差值
            int rowDiff= Math.abs(row -currentRow);
          
            //列于列的差值
            int columnDiff =  Math.abs(currentColumn-preColumn);
            //说明斜线上有皇后
            if(rowDiff==columnDiff ){
                return false;
            }
    	}//end for
    	
    	//说明(currentRow,currentColumn)可以摆放。
    	return true;
    }

}

因为博主是按照一列一列的方式来进行放置的,所以整体思路就是:在当前列逐步尝试每一行是否可以放置皇后,如果有一个可以放置皇后,就继续查看下一列的每一行是否可以放置皇后。所以代码如下:

	 int queen[] = new int[8];
    int count = 0;
    
	private void eightQueen(int currentColumn) {
		//这个for循环的目的是尝试讲皇后放在当前列的每一行
		for(int row=0;row<8;row++) {
			//判断当前列的row行是否能放置皇后
			if(isLegal(row,currentColumn)) {
		        //放置皇后
				queen[currentColumn] = row;
				if(currentColumn!=7) {
					//摆放下一列的皇后
					eightQueen(currentColumn+1);
				
				}else {
					//递归结束,此时row要++了
					count++;
				}
			}
		}//end for
	}

需要注意的是当currentColumn==7的时候,说明此时已经完成了一种摆放方法,然后for循环继续执行,去尝试其他摆放方法。
测试一波,一共有92种摆放方法:

   public static void main(String args[]) {
    	Queen queen = new Queen();
    	queen.eightQueen(0);
    	System.out.println("总共有 " +queen.count+ " 摆放方法");
    }

所以结合八皇后的实现来看看到底什么是回溯算法,看百度百科解释:回溯算法实际上一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法

比如八皇后算法来说,我们根据约束条件判断某一列的某一行是否可以放置皇后,如果不可以就继续判断当前列的下一行是否可以放置皇后.如果可以放置皇后,就继续探寻下一列中可以放置皇后的那个位置。完成一次摆放后。再重新挨个尝试下一个可能的摆放方法。

下面用一个力扣的题再次巩固下回溯算法的应用。该题描述如下:

给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。candidates 中的数字可以无限制重复被选取。

说明:所有数字(包括 target)都是正整数。解集不能包含重复的组合。 
示例 1:输入: candidates = [2,3,6,7], target = 7,
所求解集为:
[
  [7],
  [2,2,3]
]

示例 2:输入: candidates = [2,3,5], target = 8,
所求解集为:
[
  [2,2,2,2],
  [2,3,3],
  [3,5]
]

做该题的重要条件是无重复的数组,那么问题就很好解了。
首先对数组从大到小排序。这是解题的关键。
然后为了减少不必要的遍历,我们要对原来的数组进行截取:

      List<List<Integer>> res = new ArrayList<>();
         //重要的要大小排列
        Arrays.sort(candidates);
        //说明原数组中就没有满足target的数
		if (candidates[0] > target) {
			return res;
		}

	  List<Integer> newCandidates= new ArrayList<Integer>();
        int len = candidates.length;
		// 取小于target的数 组成一个临时数组
		for (int i = 0; i < len; i++) {
			int num = candidates[i];
			if (num > target) {
				break;
			}

			newCandidates.add(num);
		} // end for
         

通过上面的步骤我们拿到了一个从小到大排列的无重复数组newCandidates,数组中的元素都<=target.
因为数组从小到大排列,所以我们有如下几种情况,以candidates = [2,3,5], target = 8为例:
符合条件的子数组满足条件如下
1、target循环减去一个数,如果能一直减到到差值等于0,那么这个数组成的数组就是一个解,比如[2,2,2,2];
2、target减去一个数,然后形成了一个新的newTarget=target-num[i],让这个newTarget减去下一个数num[i+1],然后执行步骤1,则又是一个解,比如[2,3,3];(其实步骤1是步骤2的一个特例)
3、target减去一个数,然后形成了一个新的newTarget=target-num[i],让这个newTarget减去下一个数num[i+1],如果能一直减到到差值等于0说明又是一个解.,比如[3,5];
如此得到了一个规律,只要是相减之后得到差值=0,就说明就得到一个解。
得到一个新的解之后继续循环数组中的下一个数字,继续执行1,2,3步骤即可。
所以完成的解法如下:

class Solution {
     public List<List<Integer>> combinationSum(int[] candidates, int target) {
        List<List<Integer>> res = new ArrayList<>();
         //重要的要大小排列
        Arrays.sort(candidates);
         
		List<Integer> temp = new ArrayList<Integer>();

     
		if (candidates[0] > target) {
			return res;
		}

        int len = candidates.length;
         
		// 取小于target的数 足证一个临时数组
		for (int i = 0; i < len; i++) {
			int num = candidates[i];
			if (num > target) {
				break;
			}

			temp.add(num);
		} // end for
         
         //
        find(res, new ArrayList<>(), temp, target, 0);
         
        return res;
    }
    
    public void find(List<List<Integer>> res, List<Integer> tmp, List<Integer> candidates, int target, int start){
        //target==0.找到一个新的解
        if (target == 0) {
            res.add(new ArrayList<>(tmp));
        }else if(target>0){
          for (int i = start; i < candidates.size(); i++) {
             int num = candidates.get(i);
             if(num<=target){               
                  tmp.add(num);
                  //查找新的target
                  int newTarget = target-num;
                  find(res, tmp, candidates, newTarget, i);
                  tmp.remove(tmp.size() - 1);
             }
           
           }//end for
        }
    
       
    }
}
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/124813.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 【知识点】贴片电阻电容命名和封装「建议收藏」

    【知识点】贴片电阻电容命名和封装「建议收藏」常见的标准零件件主要有以下几种:电阻(R)、排阻(RA或RN)、电感(L)、陶瓷电容(C)、排容(CP)、钽质电容(C)、二极管(D)、晶体管(Q)。一、零件规格:零件规格即零件的外形尺寸,SMT(表面封装技术)发展至今,业界已经形成了一个标准零件系列,各家零件供货商皆是按这一标准制造。标准零件之尺寸规格有英制与公制两种表示方法,参照下面的常见贴片电阻尺寸表(1inch=25.4mm=

    2022年8月21日
    12
  • 阿里,B站小伙伴刚刚分享的大数据开发运维学习规划,抓紧收藏

    一.大数据运维与架构课程体系1.0课程与老师介绍本课程是专门培养大数据运维与架构方向专业人才的体系化课程。课程所有讲师小伙伴全部是在职的知名企业大数据开发专家,大数据技术专家职位员工,非专门的培训机构老师(小伙伴当前在职企业阿里巴巴,哔哩哔哩,平安集团,苏宁易购,美团等,运维集群规模大到10000+节点,课程内容可以满足市面上80%以上企业的大数据运维工作)。课程以企业大数据集群运维实战和招聘需求为出发点,深入浅出,有重点地为大家系统化地讲解整个大数据运维需要的知识点,实战教学,多年运维经验分享

    2022年4月17日
    50
  • Ant安装配置

    Ant安装配置先在http://ant.apache.org/下载Ant,例如我下载的是最新版的apache-ant-1.7.1-bin.zip文件,然后解压缩至E:/apache-ant-1.7.1,添加环境变量ANT_HOME=E:/apache-ant-1.7.1,在PATH变量中添加%ANT_HOME%/bin;,Ant就算是配置好了。环境:WindowsXP

    2022年7月18日
    17
  • 女生学java_Java Server Pages

    女生学java_Java Server Pages/*身份证号码的结构和表示形式<br>1、号码的结构<br>公民身份号码是特征组合码,由十七位数字本体码和一位校验码组成。排列顺序从左至右依次为:六位数字地址码,八位数字出生日期码,三位数字顺序码和一位数字校验码。<br>2、地址码<br>表示编码对象常住户口所在县(市、旗、区)的行政区划代码,按GB/T2260的规定执行。<br>3、出生日期码&

    2022年8月31日
    3
  • 如何解决360浏览器被hao.360.cn主页劫持问题

    如何解决360浏览器被hao.360.cn主页劫持问题360这家公司很奇葩,以流氓软件起家,后面转型为反流氓软件公司,目标是把你电脑上的其他流氓软件干掉,只留下自己家的流氓软件,所以本质没变。但是360家的浏览器易用性还可以,虽然基于GoogleChr

    2022年7月1日
    24
  • 深度学习CNN算法原理

    深度学习CNN算法原理深度学习CNN算法原理一卷积神经网络卷积神经网络(CNN)是一种前馈神经网络,通常包含数据输入层、卷积计算层、ReLU激活层、池化层、全连接层(INPUT-CONV-RELU-POOL-FC),是由卷积运算来代替传统矩阵乘法运算的神经网络。CNN常用于图像的数据处理,常用的LenNet-5神经网络模型如下图所示:       该模型由2个卷积层、2个抽样层(池化层)、3个全…

    2025年10月7日
    5

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号