按位取反怎么运算_按位取反运算

按位取反怎么运算_按位取反运算读本文前请首先搞懂“反码”,“取反”,“按位取反(~)”,这3个概念是不一样的。取反:0变1,1变0反码:正数的反码是其本身,对于负数其符号位不变其它各位取反(0变1,1变0)按位取反(~):这将是下面要讨论的。“~”运算符在c、c++、java、c#中都有,之前一直没有遇到这个运算符。要弄懂这个运算符的计算方法,首先必须明白二进制数在内存中的存放形式,二

大家好,又见面了,我是你们的朋友全栈君。

首先搞懂  “反码”,“取反”,“按位取反(~)”,这3个概念是不一样的。

取反:0变1,1变0

反码:正数的反码是其本身,对于负数其符号位不变其它各位取反(0变1,1变0)

按位取反(~): 这将是下面要讨论的。

————————————————————————————————-

“~”运算符在c、c++、java、c#中都有,之前一直没有遇到这个运算符。

要弄懂这个运算符的计算方法,首先必须明白二进制数在内存中的存放形式,二进制数在内存中是以补码的形式存放的。

另外正数和负数的补码不一样,正数的补码、反码都是其本身,既:

正数9:

  • 取原码: 0000 1001
  • 取补码: 0000 1001
  • 取反码: 0000 1001
  • 内存中存放格式 0000 1001

 

再例如: -2

  • 取原码: 1000 0010 (最高位1表示符号位)
  • 取反码: 1111 1101 (符号位不变,其余各位求反)
  • 取补码: 1111 1110 (反码末位+1)
  • 内存中存放格式: 1111 1110

————————————————————————————————-

弄懂了上述情况后,按位取反如何计算就好办了

假设要对正数9按位取反——> (~9),计算步骤如下,

  • 取原码 0000 1001,
  • 取反码 0000 1001,
  • 取补码 0000 1001,
  • 对其取反 1111 0110(符号位一起进行取反,这不是最终结果,只是补码的取反仅此而已)
  • 我们还需要把他转换成原码,由于最高位是1代表负数,下面进行负数补码到原码的逆运算
  • 先减1得反码: 1111 0101
  • 取反得原码:1000 1010,(取反过程符号位不变)
  • 前面最高位1是符号位,既得十进制:-10
  • 不知道说的明不明白,这里步骤就是:
  • 1. 先对正数求补码
  • 2. 然后对补码取反,包括符号位
  • 3. 最后进行补码求原码的逆过程。

经评论区朋友指正:原推算过程存在错误,很巧合的是当时用来举例的9按照错误的推算过程也可以获得正确的结果(用5可以推翻这个结论是错误的)。

现更新计算过程:接上面对 0000 1001 取反后得到 1111 0110,由于计算机需要以补码表示,需要对该值获取补码才能获得最终结果

  • 取原码:1111 0110
  • 取反码:1000 1001 (符号位不变,其余各位求反
  • 取补码:1000 1010 (反码+1

最终结果是 1000 1010,也就是-10

————————————————————————————————-

再对正数5按位取反——> (~5),计算步骤如下

原码,反码,补码皆为 0000 0101

对其取反 1111 1010(符号位一起进行取反) 

取反码:1000 0101(符号位不变,其余各位求反)

取补码:1000 0110 (反码+1)

最终结果 1000 0110 ,也就是-6

————————————————————————————————-

下面我们再计算 (~ -10)

-10的原码:1000 1010  

-10的反码:1111  0101 (符号位不变)

-10的补码:1111 0110 (反码+1)

补码取反:0000 1001 (符号位一起取反)

正好得到一个正数,那么对其求原码就可得到最终结果

再因正数的补码,反码,原码都一样,最终结果是 0000 1001 ,正好是9的二进制。

————————————————————————————————-

最后一个有趣的事实是:

1. 所有正整数的按位取反是其本身+1的负数

2. 所有负整数的按位取反是其本身+1的绝对值

3. 零的按位取反是 -1(0在数学界既不是正数也不是负数) 

 

	// 测试-1亿 到 1亿的所有整数  :)
	for (int i = 0; i <= 100000000;++i)
	{
		if (~i != -(i+1) ) {
			__asm { cli	}			// 汇编中断指令
		}

		if (i && ~(-i) != abs((-i)+1) ) {
			__asm { cli	}
		}
	}

 

 

 

 

 

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/125099.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • python线程间通信的方式_android 线程间通信

    python线程间通信的方式_android 线程间通信1、python多线程#!/usr/bin/evnpython3#–*–coding:utf-8–*–#该实例反编译来说明函数执行流程importdisdefadd(a):a=a+1returnaprint(dis.dis(add))#Python中一个线程对应于C语言中的一个线程(CPython而言)(Python并不一定…

    2022年9月1日
    1
  • 回溯法 0-1背包问题

    回溯法 0-1背包问题一.回溯法回溯法采用的是深度优先策略,回溯法按深度优先策略搜索问题的解空间树。首先从根节点出发搜索解空间树,当算法搜索至解空间树的某一节点时,先利用剪枝函数判断该节点是否可行(即能得到问题的解)。如

    2022年7月2日
    27
  • 2021 idea 激活码(JetBrains全家桶)

    (2021 idea 激活码)这是一篇idea技术相关文章,由全栈君为大家提供,主要知识点是关于2021JetBrains全家桶永久激活码的内容IntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,下面是详细链接哦~https://javaforall.net/100143.htmlMLZPB5EL5Q-eyJsaWN…

    2022年3月21日
    80
  • 〖Python〗– Git大全

    〖Python〗– Git大全【初识及基本操作】一、什么是Git?定义:Git是分布式版本控制系统。1.1什么是版本控制我们可以回想以下,在我们上学毕业要写论文或是准备一份演讲稿的时候,都会用文件去保存和管理一些文档之类的

    2022年7月5日
    19
  • 事务日志还原的次意外的操作失误

    事务日志还原的次意外的操作失误

    2021年11月25日
    47
  • 数据库设计之学生选课系统_学生选课系统界面设计

    数据库设计之学生选课系统_学生选课系统界面设计目录引言…5第一章需求分析…61.1需求分析…61.1.1分析阶段…61.2任务概述…71.2.1目标…71.2.2运行环境…7软件配置:1.2任务概述…81.2.1目标…81.2.2运行环境…81.3数据流图…81.4数据字典…9第二章概念结构设计…112.1概念结构…112.2学…

    2022年10月15日
    0

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号