详细BP神经网络预测算法及实现过程实例「建议收藏」

1.具体应用实例。根据表2,预测序号15的跳高成绩。表2国内男子跳高运动员各项素质指标 序号 跳高成绩() 30行进跑(s) 立定三级跳远() 助跑摸高() 助跑4—6步跳高() 负重深蹲杠铃() 杠铃半蹲系数 …

大家好,又见面了,我是你们的朋友全栈君。

1.具体应用实例。根据表2,预测序号15的跳高成绩。

表2 国内男子跳高运动员各项素质指标

序号

跳高成绩()

30行进跑(s)

立定三级跳远()

助跑摸高()

助跑4—6步跳高()

负重深蹲杠铃()

杠铃半蹲系数

100

(s)

抓举

()

     1

2.24

3.2

9.6

3.45

2.15

140

2.8

11.0

50

2

2.33

3.2

10.3

3.75

2.2

120

3.4

10.9

70

3

2.24

3.0

9.0

3.5

2.2

140

3.5

11.4

50

4

2.32

3.2

10.3

3.65

2.2

150

2.8

10.8

80

5

2.2

3.2

10.1

3.5

2

80

1.5

11.3

50

6

2.27

3.4

10.0

3.4

2.15

130

3.2

11.5

60

7

2.2

3.2

9.6

3.55

2.1

130

3.5

11.8

65

8

2.26

3.0

9.0

3.5

2.1

100

1.8

11.3

40

9

2.2

3.2

9.6

3.55

2.1

130

3.5

11.8

65

10

2.24

3.2

9.2

3.5

2.1

140

2.5

11.0

50

11

2.24

3.2

9.5

3.4

2.15

115

2.8

11.9

50

12

2.2

3.9

9.0

3.1

2.0

80

2.2

13.0

50

13

2.2

3.1

9.5

3.6

2.1

90

2.7

11.1

70

14

2.35

3.2

9.7

3.45

2.15

130

4.6

10.85

70

15

 

3.0

9.3

3.3

2.05

100

2.8

11.2

50

 

4.4 (序号15)跳高成绩预测

4.4.1 数据整理

1)我们将前14组国内男子跳高运动员各项素质指标作为输入,即(30m行进跑,立定三级跳远,助跑摸高,助跑4-6步跳高,负重深蹲杠铃,杠铃半蹲系数,100m,抓举),将对应的跳高成绩作为输出。并用matlab自带的premnmx()函数将这些数据归一化处理。

数据集:(注意:每一列是一组输入训练集,行数代表输入层神经元个数,列数输入训练集组数)

P=[3.2 3.2 3 3.2 3.2 3.4 3.2 3 3.2 3.2 3.2 3.9 3.1 3.2;

9.6 10.3 9 10.3 10.1 10 9.6 9 9.6 9.2 9.5 9 9.5 9.7;

3.45 3.75 3.5 3.65 3.5 3.4 3.55 3.5 3.55 3.5 3.4 3.1 3.6 3.45;

2.15 2.2 2.2 2.2 2 2.15 2.14 2.1 2.1 2.1 2.15 2 2.1 2.15;

140 120 140 150 80 130 130 100 130 140 115 80 90 130;

2.8 3.4 3.5 2.8 1.5 3.2 3.5 1.8 3.5 2.5 2.8 2.2 2.7 4.6;

11 10.9 11.4 10.8 11.3 11.5 11.8 11.3 11.8 11 11.9 13 11.1 10.85;

50 70 50 80 50 60 65 40 65 50 50 50 70 70];

T=[2.24 2.33 2.24 2.32 2.2 2.27 2.2 2.26 2.2 2.24 2.24 2.2 2.2 2.35];

4.4.2 模型建立

4.4.2.1 BP网络模型

    BP网络(Back-ProPagation Network)又称反向传播神经网络, 通过样本数据的训练,不断修正网络权值和阈值使误差函数沿负梯度方向下降,逼近期望输出。它是一种应用较为广泛的神经网络模型,多用于函数逼近、模型识别分类、数据压缩和时间序列预测等。

 

详细BP神经网络预测算法及实现过程实例「建议收藏」

BP网络由输入层、隐层和输出层组成,隐层可以有一层或多层,图2是m×k×n的三层BP网络模型,网络选用S型传递函数,详细BP神经网络预测算法及实现过程实例「建议收藏」 通过反传误差函数详细BP神经网络预测算法及实现过程实例「建议收藏」 ( (Ti为期望输出、Oi为网络的计算输出),不断调节网络权值和阈值使误差函数E达到极小。

BP网络具有高度非线性和较强的泛化能力,但也存在收敛速度慢、迭代步数多、易于陷入局部极小和全局搜索能力差等缺点。可以先用遗传算法对“BP网络”进行优化在解析空间找出较好的搜索空间,再用BP网络在较小的搜索空间内搜索最优解。

4.4.2.2 模型求解 

4.4.2.2.1 网络结构设计

1) 输入输出层的设计

该模型由每组数据的各项素质指标作为输入,以跳高成绩作为输出,所以输入层的节点数为8,输出层的节点数为1。

2) 隐层设计

有关研究表明, 有一个隐层的神经网络, 只要隐节点足够多, 就可以以任意精度逼近一个非线性函数。因此, 本文采用含有一个隐层的三层多输入单输出的BP网络建立预测模型。在网络设计过程中, 隐层神经元数的确定十分重要。隐层神经元个数过多, 会加大网络计算量并容易产生过度拟合问题; 神经元个数过少, 则会影响网络性能, 达不到预期效果。网络中隐层神经元的数目与实际问题的复杂程度、输入和输出层的神经元数以及对期望误差的设定有着直接的联系。目前, 对于隐层中神经元数目的确定并没有明确的公式, 只有一些经验公式, 神经元个数的最终确定还是需要根据经验和多次实验来确定。本文在选取隐层神经元个数的问题上参照了以下的经验公式:

详细BP神经网络预测算法及实现过程实例「建议收藏」

其中, n为输入层神经元个数, m 为输出层神经元个数, a 为[ 1, 10]之间的常数。 

根据上式可以计算出神经元个数为4-13个之间,在本次实验中选择隐层神经元个数为6.

网络结构示意图如下:

详细BP神经网络预测算法及实现过程实例「建议收藏」

 

4.4.2.2.2 激励函数的选取

BP神经网络通常采用Sigmoid可微函数和线性函数作为网络的激励函数。本文选择S型正切函数tansig作为隐层神经元的激励函数。而由于网络的输出归一到[ -1, 1]范围内, 因此预测模型选取S 型对数函数tansig作为输出层神经元的激励函数。

4.4.2.2.3 模型的实现

此次预测选用MATLAB中的神经网络工具箱进行网络的训练, 预测模型的具体实现步骤如下:

将训练样本数据归一化后输入网络, 设定网络隐层和输出层激励函数分别为tansig和logsig函数, 网络训练函数为traingdx, 网络性能函数为mse,隐层神经元数初设为6。设定网络参数。网络迭代次数epochs为5000次, 期望误差goal为0.00000001, 学习速率lr为0. 01。设定完参数后, 开始训练网络。详细BP神经网络预测算法及实现过程实例「建议收藏」

该网络通过24次重复学习达到期望误差后则完成学习。详细代码见附录。

网络训练完成后,只需要将各项素质指标输入网络即可得到预测数据。

预测结果为:2.20

 

matlab代码:

P=[3.2 3.2 3 3.2 3.2 3.4 3.2 3 3.2 3.2 3.2 3.9 3.1 3.2;
9.6 10.3 9 10.3 10.1 10 9.6 9 9.6 9.2 9.5 9 9.5 9.7;
3.45 3.75 3.5 3.65 3.5 3.4 3.55 3.5 3.55 3.5 3.4 3.1 3.6 3.45;
2.15 2.2 2.2 2.2 2 2.15 2.14 2.1 2.1 2.1 2.15 2 2.1 2.15;
140 120 140 150 80 130 130 100 130 140 115 80 90 130;
2.8 3.4 3.5 2.8 1.5 3.2 3.5 1.8 3.5 2.5 2.8 2.2 2.7 4.6;
11 10.9 11.4 10.8 11.3 11.5 11.8 11.3 11.8 11 11.9 13 11.1 10.85;
50 70 50 80 50 60 65 40 65 50 50 50 70 70];
T=[2.24 2.33 2.24 2.32 2.2 2.27 2.2 2.26 2.2 2.24 2.24 2.2 2.2 2.35];
[p1,minp,maxp,t1,mint,maxt]=premnmx(P,T);
%创建网络
net=newff(minmax(P),[8,6,1],{'tansig','tansig','purelin'},'trainlm');
%设置训练次数
net.trainParam.epochs = 5000;
%设置收敛误差
net.trainParam.goal=0.0000001;
%训练网络
[net,tr]=train(net,p1,t1);
TRAINLM, Epoch 0/5000, MSE 0.533351/1e-007, Gradient 18.9079/1e-010
TRAINLM, Epoch 24/5000, MSE 8.81926e-008/1e-007, Gradient 0.0022922/1e-010
TRAINLM, Performance goal met.
 
%输入数据
a=[3.0;9.3;3.3;2.05;100;2.8;11.2;50];
%将输入数据归一化
a=premnmx(a);
%放入到网络输出数据
b=sim(net,a);
将得到的数据反归一化得到预测数据
c=postmnmx(b,mint,maxt);
c
 
c =
 
    2.2003

扫描下方“二维码”回复“书籍”,获取30本数据分析、python、Matlab、数据库、统计学”等经典书籍。

详细BP神经网络预测算法及实现过程实例「建议收藏」

转自:https://www.cnblogs.com/sallybin/p/3169572.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/126436.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Eamcs ditaa基于字符图形产生的图像上

    Eamcs ditaa基于字符图形产生的图像上

    2022年1月5日
    54
  • iphone4s必装AppSync补丁教程使iOS5完全越狱[通俗易懂]

    iphone4s必装AppSync补丁教程使iOS5完全越狱[通俗易懂]iphone4s必装AppSync补丁教程使iOS5完全越狱2012-06-1719:44来源:未知一念之间我要评论大中小iPhone4等设备完美越狱终于发布,不过完美越狱完成后如果给iPhone上安装从iPhone中文网或者其他网站上下载ipa后缀格式的软件和游戏,还有一项重要的工作就是在CYIDIA上安装ipa补丁AppSync5.0+,下面就教大家怎样安装…

    2022年6月13日
    34
  • php号码归属地查询源码,手机号码归属地查询

    php号码归属地查询源码,手机号码归属地查询手机号码归属地查询请输入你要查询的手机号码:”.$phone.”属于”.getphone($phone).””;}}?>//function.php文件session_start();functionupdate($num,$info){$dbpath=”xiaolin/”;$len=strlen($num);if($len<7){return”手机号码最低7位哦”;}…

    2022年7月22日
    13
  • VLAN标签「建议收藏」

    VLAN标签「建议收藏」1.VLAN标签定义和作用要使交换机能够分辨不同的VLAN报文,需要在报文中添加标识VAN信息的字段。IEEE802.1Q协议规定在以太网数据帧的目的MAC地址和源MAC地址字段之后、协议类型字段之前加入4个字节的VLAN标签(又称VLANTag,简称Tag),用以标识VLAN信息,IEEE802.1Q封装的VLAN数据帧格式如图所示。2.常用设备收发数据帧的VLAN标签情况…

    2022年8月10日
    6
  • 怪盗基德三角滑翔翼设计图_第一代怪盗基德

    怪盗基德三角滑翔翼设计图_第一代怪盗基德最长上神子序列(nlogn)原题链接怪盗基德是一个充满传奇色彩的怪盗,专门以珠宝为目标的超级盗窃犯。而他最为突出的地方,就是他每次都能逃脱中村警部的重重围堵,而这也很大程度上是多亏了他随身携带的便于操作的滑翔翼。有一天,怪盗基德像往常一样偷走了一颗珍贵的钻石,不料却被柯南小朋友识破了伪装,而他的滑翔翼的动力装置也被柯南踢出的足球破坏了。不得已,怪盗基德只能操作受损的滑翔翼逃脱。假设城市中一共有N幢建筑排成一条线,每幢建筑的高度各不相同。初始时,怪盗基德可以在任何一幢建筑的顶端。他可以选择一个

    2022年8月8日
    10
  • 常见JVM面试题及答案整理[通俗易懂]

    常见JVM面试题及答案整理[通俗易懂]前言总结了JVM一些经典面试题,分享出我自己的解题思路,希望对大家有帮助,有哪里你觉得不正确的话,欢迎指出,后续有空会更新。1.什么情况下会发生栈内存溢出。思路:描述栈定义,再描述为什么会溢出,再说明一下相关配置参数,OK的话可以给面试官手写是一个栈溢出的demo。我的答案:栈是线程私有的,他的生命周期与线程相同,每个方法在执行的时候都会创建一个栈帧,用来存储局部变量表,操作…

    2022年6月9日
    29

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号