tensorflow2.0 cnn(layerwise)

实验环境:tensorflow版本1.2.0,python2.7介绍depthwise_conv2d来源于深度可分离卷积:Xception:DeepLearningwithDepthwiseSeparableConvolutionstf.nn.depthwise_conv2d(input,filter,strides,padding,rate=None,name=None,data_fo

大家好,又见面了,我是你们的朋友全栈君。

实验环境:tensorflow版本1.2.0,python2.7


介绍

depthwise_conv2d来源于深度可分离卷积:

Xception: Deep Learning with Depthwise Separable Convolutions

tf.nn.depthwise_conv2d(input,filter,strides,padding,rate=None,name=None,data_format=None)

除去name参数用以指定该操作的name,data_format指定数据格式,与方法有关的一共五个参数:

  • input:
    指需要做卷积的输入图像,要求是一个4维Tensor,具有[batch, height, width, in_channels]这样的shape,具体含义是[训练时一个batch的图片数量, 图片高度, 图片宽度, 图像通道数]

  • filter:
    相当于CNN中的卷积核,要求是一个4维Tensor,具有[filter_height, filter_width, in_channels, channel_multiplier]这样的shape,具体含义是[卷积核的高度,卷积核的宽度,输入通道数,输出卷积乘子],同理这里第三维in_channels,就是参数value的第四维

  • strides:
    卷积的滑动步长。

  • padding:
    string类型的量,只能是”SAME”,”VALID”其中之一,这个值决定了不同边缘填充方式。

  • rate:
    这个参数的详细解释见【Tensorflow】tf.nn.atrous_conv2d如何实现空洞卷积?

结果返回一个Tensor,shape为[batch, out_height, out_width, in_channels * channel_multiplier],注意这里输出通道变成了in_channels * channel_multiplier


实验

为了形象的展示depthwise_conv2d,我们必须要建立自定义的输入图像和卷积核

img1 = tf.constant(value=[[[[1],[2],[3],[4]],[[1],[2],[3],[4]],[[1],[2],[3],[4]],[[1],[2],[3],[4]]]],dtype=tf.float32)
img2 = tf.constant(value=[[[[1],[1],[1],[1]],[[1],[1],[1],[1]],[[1],[1],[1],[1]],[[1],[1],[1],[1]]]],dtype=tf.float32)
img = tf.concat(values=[img1,img2],axis=3)
filter1 = tf.constant(value=0, shape=[3,3,1,1],dtype=tf.float32)
filter2 = tf.constant(value=1, shape=[3,3,1,1],dtype=tf.float32)
filter3 = tf.constant(value=2, shape=[3,3,1,1],dtype=tf.float32)
filter4 = tf.constant(value=3, shape=[3,3,1,1],dtype=tf.float32)
filter_out1 = tf.concat(values=[filter1,filter2],axis=2)
filter_out2 = tf.concat(values=[filter3,filter4],axis=2)
filter = tf.concat(values=[filter_out1,filter_out2],axis=3)

建立好了img和filter,就可以做卷积了

out_img = tf.nn.conv2d(input=img, filter=filter, strides=[1,1,1,1], padding='VALID')

好了,用一张图来详细展示这个过程
这里写图片描述
这里写图片描述

这是普通的卷积过程,我们再来看深度卷积。

out_img = tf.nn.depthwise_conv2d(input=img, filter=filter, strides=[1,1,1,1], rate=[1,1], padding='VALID')

这里写图片描述
这里写图片描述

现在我们可以形象的解释一下depthwise_conv2d卷积了。看普通的卷积,我们对卷积核每一个out_channel的两个通道分别和输入的两个通道做卷积相加,得到feature map的一个channel,而depthwise_conv2d卷积,我们对每一个对应的in_channel,分别卷积生成两个out_channel,所以获得的feature map的通道数量可以用in_channel* channel_multiplier来表达,这个channel_multiplier,就可以理解为卷积核的第四维。


代码清单

import tensorflow as tf


img1 = tf.constant(value=[[[[1],[2],[3],[4]],[[1],[2],[3],[4]],[[1],[2],[3],[4]],[[1],[2],[3],[4]]]],dtype=tf.float32)
img2 = tf.constant(value=[[[[1],[1],[1],[1]],[[1],[1],[1],[1]],[[1],[1],[1],[1]],[[1],[1],[1],[1]]]],dtype=tf.float32)
img = tf.concat(values=[img1,img2],axis=3)
filter1 = tf.constant(value=0, shape=[3,3,1,1],dtype=tf.float32)
filter2 = tf.constant(value=1, shape=[3,3,1,1],dtype=tf.float32)
filter3 = tf.constant(value=2, shape=[3,3,1,1],dtype=tf.float32)
filter4 = tf.constant(value=3, shape=[3,3,1,1],dtype=tf.float32)
filter_out1 = tf.concat(values=[filter1,filter2],axis=2)
filter_out2 = tf.concat(values=[filter3,filter4],axis=2)
filter = tf.concat(values=[filter_out1,filter_out2],axis=3)

out_img = tf.nn.depthwise_conv2d(input=img, filter=filter, strides=[1,1,1,1], rate=[1,1], padding='VALID')

输出:

rate=1, VALID mode result:
[[[[ 0. 36. 9. 27.] [ 0. 54. 9. 27.]] [[ 0. 36. 9. 27.] [ 0. 54. 9. 27.]]]]
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/127979.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Java dom4j生成和解析XML

    Java dom4j生成和解析XMLdom4j使用:需先导入dom4j对应的jar,本章用的是dom4j-1.6.1.jar优点:DOM4J使Java开发的灵活性和XML解析代码易于维护dom4j相关操作类Document:表示整个xml文档,是一个树形结构Eelment:表示一个xml的元素,提供方法操作其子元素,它的文本,属性和名称空间Attribute:表示元素的属性Node:表示元素,属性do…

    2022年6月21日
    29
  • zabbix添加snmp监控项_SNMP协议

    zabbix添加snmp监控项_SNMP协议目录一、SNMPTrap消息处理流程二、snmptt1、SNMPTrap、snmptt安装2、配置文件修改3、SNMPTrapFile文件创建4、监控项创建三、perl脚本 1、SNMPTrap安装2、从zabbix源码包中拷贝perl脚本到/usr/bin/目录下,并增加执行权限3、修改snmptrapd.conf配置4、修改zabbix配置 …

    2022年8月20日
    7
  • linux修改sftp端口的方法:2个地方需要修改「建议收藏」

    linux修改sftp端口的方法:2个地方需要修改「建议收藏」SSH配置文件有两个都放在/etc/ssh/ssh_config和/etc/ssh/sshd_config在ssh_config中,找到#port22,在其下面就加入port8080同时,在sshd_config中,找到#port22,在其下面就加入port8080(与上面相同)之后重启sshservicesshdrestart…

    2022年9月14日
    3
  • Pytest(1)安装与入门「建议收藏」

    Pytest(1)安装与入门「建议收藏」pytest介绍pytest是python的一种单元测试框架,与python自带的unittest测试框架类似,但是比unittest框架使用起来更简洁,效率更高。根据pytest的官方网站介绍,它

    2022年7月31日
    5
  • servlet-EL表达式与JSTL标签「建议收藏」

    servlet-EL表达式与JSTL标签「建议收藏」EL表达式EL表达式的作用:EL表达式主要是代替jsp页面中的表达式脚本在jsp页面中进行数据输出。因为EL表达式在输出数据的时候,要比jsp表达式脚本要简洁的多格式$(表达式)<%@ page import=”java.util.Map” %><%@ page import=”java.util.HashMap” %><%@ page contentType=”text/html;charset=UTF-8″ language=”java” %><h

    2022年8月8日
    5
  • laravel 验证码手机与提交手机的验证?

    laravel 验证码手机与提交手机的验证?

    2021年10月25日
    43

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号