python中取整数的几种方法(python怎么取整)

一、向零取整:int()python自带的int()取整>>>int(1.2)1>>>int(2.8)2>>>int(-0.1)0>>>int(-5.6)-5总结:int()函数是“向0取整”,取整方向总是让结果比小数的绝对值更小二、向上取整:math.ceil()>>>importmath&gt…

大家好,又见面了,我是你们的朋友全栈君。

一、向零取整:int()

python自带的int()取整

>>> int(1.2)

1

>>> int(2.8)

2

>>> int(-0.1)

0

>>> int(-5.6)

-5

总结:int()函数是“向0取整”,取整方向总是让结果比小数的绝对值更小

二、向上取整:math.ceil()

>>> import math

>>>

>>> math.ceil(0.6)

1

>>> math.ceil(1.1)

2

>>> math.ceil(3.0)

3

>>> math.ceil(-0.3)

0

>>> math.ceil(-5.1)

-5

总结:math.ceil()严格遵循向上取整,所有小数都是向着数值更大的方向取整,不论正负数都如此

三、向下取整:math.floor() , “//”

>>> import math

>

>>> math.floor(0.5)

0

>>> math.floor(1.2)

1

>>> math.floor(-0.9)

-1

>>> math.floor(-3.0)

-3

>>> math.floor(-3.1)

-4

总结:math.floor()严格遵循向下取整,所有小数都是向着数值更小的方向取整,不论正负数都如此

再看看python的取整“//“,同样是向下取整,记住啊:

>>> 5//3

1

>>> 1//5

0

>>> 8//4

2

>>> -6//5

-2

>>> -8//9

-1

>>> -8//2

-4

四、四舍五入 round(x,[.n])

>>> round(1.1)

1

>>> round(4.5)

4

>>> round(4.51)

5

>>> round(-1.3)

-1

>>> round(-4.5)

-4

>>> round(-4.51)

-5

>>> round(1.248,2)

1.25

>>> round(1.241,2)

1.24

>>> round(-1.248,1)

-1.2

>>> round(1.25,1)

1.2

>>>

这里注意:round(4.5)的结果是4,round(4.51)的结果才是5,这里要看5后面的数字,只有大于5时才进1,恰好等于5时还是舍去的。这与我们字面上理解的”五入“有所出入(Python 3.7.4)。

五、分别取整数和小数部分 math.modf()

>>> math.modf(100.123)

(0.12300000000000466, 100.0)

>>> math.modf(-100.123)

(-0.12300000000000466, -100.0)

>>>

math.modf()函数得到一个(x,y)的元组,x为小数部分,y为整数部分(这里xy均为float浮点数)

注意:结果是”小数+整数“,而非”整数+小数“。

六、%求模

python运算符%取模 – 返回除法的余数

>>> 5%2

1

>>> 0.5%2

0.5

>>> 5.3%2

1.2999999999999998“`

正数很好理解,这里返回的余数时一个无线接近结果的近似值。

“`python

>>> -2.5%8

5.5

>>> -3.2%2

0.7999999999999998

>>> 5%-2

-1

>>> 5%(-3)

-1

>>> 5.2%-2

-0.7999999999999998

>>> -8%-3

-2

>>> -2%-8

-2

>>> -2%-9

-2

懵了,为什么不是:-2.5和-1.2,而是:5.5和0.8?

求模运算规则是由除法规则定的:

模=被除数-除数×商

这里的”商”的值其本质是由python的整除//采取的向下取整算法决定的。所以,整理下公式就是这样的:

模=被除数-除数×(被除数//除数)

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/128438.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Java 四种线程池的用法分析

    Java 四种线程池的用法分析介绍newThread的弊端及Java四种线程池的使用,对Android同样适用,本文是基础篇。转载请标注原地址:http://blog.csdn.net/u011974987/article/details/51027795;1、newThread的弊端执行一个异步任务你还只是如下newThread吗?newThread(newRunnable(){@Override

    2022年7月8日
    24
  • MyBatis常用对象SqlSessionFactory和SqlSession介绍和运用

    MyBatis常用对象SqlSessionFactory和SqlSession介绍和运用前言:学习框架一个比较好的路径阅读源码.本文介绍的SqlSessionFactory和SqlSession.可以通过了解SqlSessionFactory接口和SqlSession接口以及两个的实现类入手,去看源码了解实现过程.最好能把项目下载到本地,慢慢分析实现过程.Myabtis官网:http://www.mybatis.org/github地址:https://github.com/myb

    2022年4月28日
    62
  • 如何利用matlab进行聚类分析_什么是聚类分析

    如何利用matlab进行聚类分析_什么是聚类分析1.用Matlab编程实现运用Matlab中的一些基本矩阵计算方法,通过自己编程实现聚类算法,在此只讨论根据最短距离规则聚类的方法。调用函数:min1.m——求矩阵最小值,返回最小值所在行和列以及值的大小min2.m——比较两数大小,返回较小值std1.m——用极差标准化法标准化矩阵ds1.m——用绝对值距离法求距离矩阵cluster.m——应用最短距离聚类法进行聚类分析print1.m——调用…

    2022年10月11日
    3
  • Ajax的面试题_javascript面试题及答案

    Ajax的面试题_javascript面试题及答案一、什么事Ajax?为什么要用Ajax?(谈谈对Ajax的认识)什么是Ajax:  Ajax是“AsynchronousJavaScriptandXML”的缩写。他是指一种创建交互式网页应用的网页开发技术。  Ajax包含下列技术:    基于web标准(standards-basedpresentation)XHTML+CSS的表示;    使用DOM(Document…

    2022年8月27日
    5
  • vscode的使用

    vscode的使用一、基本使用1、生成Html模板先把右下角换成然后在空白页面 输入 ! 按下Tab即可。2、vscoe自动保存自动保存简直不要太爽 File–> Auto Save 即可。 可以在下面修改秒数保存。3、颜色主题以及字体或者直接快捷键 ctrl+k按完直接ctrl+t即可。上下选择合适主题。修改字体大小即可。4、修改删除快捷键…

    2022年6月13日
    53
  • pmf文件「建议收藏」

    pmf文件「建议收藏」1、首先是视频软件,其次还是DISKGENI(磁盘分区软件),当作镜像文件恢复文件到磁盘(类似ISO)。2、PMF文件为主要与primarilyPegasusMailMessageAttachment(DavidHarris)相关联的GIS文件。PMF文件还与以下相关联:PayrollMate2008(RealTaxTools.com),PCLToolPageTechM…

    2022年6月18日
    73

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号