鸢尾花数据集knn算法可视化(在R中找到鸢尾花数据)

kNN处理鸢尾花数据集kNN(KNearestNeighbor)算法是机器学习中最基础入门,也是最常用的算法之一,可以解决大多数分类与回归问题。这里以鸢尾花数据集为例,讨论分类问题中的kNN的思想。鸢尾花数据集内包含3类共150条记录,每类各50个数据,每条记录都有4项特征:花萼长度(sepallength)、花萼宽度(sepalwidth)、花瓣长度(petal…

大家好,又见面了,我是你们的朋友全栈君。

kNN(K Nearest Neighbor)算法是机器学习中最基础入门,也是最常用的算法之一,可以解决大多数分类与回归问题。这里以鸢尾花数据集为例,讨论分类问题中的 kNN 的思想。

鸢尾花数据集内包含 3 类共 150 条记录,每类各 50 个数据,每条记录都有 4 项特征:花萼长度(sepal length)、花萼宽度(sepal width)、花瓣长度(petal length)、花瓣宽度(petal length)。

可以通过这 4 个特征预测鸢尾花卉属于(iris-setosa,,iris-versicolour, iris-virginica)中的哪一品种,这里使用 kNN 来预测。

首先,导入鸢尾花数据集(两种方式,一种是下载鸢尾花数据集,然后从文件读取,我们采用第二种,直接从datasets中读取,返回的是字典格式的数据),并将鸢尾花数据集分为训练集和测试集。

iris = datasets.load_iris()
X = iris.data
y = iris.target
# 随机划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, 
                                                    test_size=0.2, random_state=20, 														shuffle=True)

为了方便理解 kNN,将鸢尾花的训练数据的前两个特征值,分别作为 x 轴和 y 轴数据,进行可视化。

# 数据可视化
plt.scatter(X_train[y_train == 0][:, 0], X_train[y_train == 0][:, 1], color='r')
plt.scatter(X_train[y_train == 1][:, 0], X_train[y_train == 1][:, 1], color='g')
plt.scatter(X_train[y_train == 2][:, 0], X_train[y_train == 2][:, 1], color='b')
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.show()

在这里插入图片描述

如图所示,三个不同的颜色分别代表鸢尾花的三个类别。现在如果有一个新的数据(图中黑色点表示),如何判断它属于哪个类别呢?

我们需要使用的 kNN 算法,正如它的英文 K Nearest Neighbor,算法的核心思想是,选取训练集中离该数据最近的 k 个点,它们中的大多数属于哪个类别,则该新数据就属于哪个类别。

根据它的核心思想,模型中有三个需要确定的要素:

  • k 如何选择
  • 如何确定「最近」,也就是如何度量距离
  • 如何确定分类的规则

其中,k 的选择是一个超参数的选择问题,需要通过调整 K 的值确定最好的 K,最好选奇数,否则会出现同票。

可以通过交叉验证法确定模型的最佳 k 值(这里后面会谈);

度量距离的方式,一般为 Lp 距离:

在这里插入图片描述

p = 1 时,为曼哈顿距离:

鸢尾花数据集knn算法可视化(在R中找到鸢尾花数据)

p = 2 时,为欧式距离:

在这里插入图片描述

欧式距离是我们最常用的计算距离的方式。

分类的规则,采取多数表决的原则,即由输入实例的 k 个近邻的训练实例中的多数类决定输入实例的类。

代码如下:

# 计算距离,默认为欧氏距离
def calculateDistance(data1, data2, p=2):
    if len(data1) == len(data2) and len(data1) >= 1:
        sum = 0
        for i in range(len(data1)):
            sum += math.pow(abs(data1[i] - data2[i]), p)
            dist = math.pow(sum, 1/p)
    return dist

# knn模型分类
def knnClassify(X_train, y_train, test_data, k):
    dist = [calculateDistance(train_data, test_data) for train_data in X_train]
    # 返回距离最近的k个训练样本的索引(下标)
    indexes = np.argsort(dist)[:k]
    count = Counter(y_train[indexes])
    return count.most_common(1)[0][0]

if __name__ == '__main__':
    # 预测结果
    predictions = [knnClassify(X_train, y_train, test_data, 3) for test_data in X_test]
    # 与实际结果对比
    correct = np.count_nonzero((predictions == y_test) == True)
    print("Accuracy is: %.3f" % (correct/len(X_test)))

这里是自己实现的分类代码,在 sklearn 中有封装好的 kNN 库,代码如下:

# 创建kNN_classifier实例
kNN_classifier = KNeighborsClassifier(n_neighbors=3)
# kNN_classifier做一遍fit(拟合)的过程,没有返回值,模型就存储在kNN_classifier实例中
kNN_classifier.fit(X_train, y_train)
correct = np.count_nonzero((kNN_classifier.predict(X_test) == y_test) == True)
print("Accuracy is: %.3f" % (correct/len(X_test)))

kNN 没有显式的学习过程,这是它的优点,但在用它进行数据分类时,需要注意几个问题:

  • 不同特征有不同的量纲,必要时需进行特征归一化处理
  • kNN 的时间复杂度为O(D*N*N),D 是维度数,N 是样本数,这样,在特征空间很大和训练数据很大时,kNN 的训练时间会非常慢。这时就需要用到 kd 树,可以将时间复杂度降为O(logD*N*N)(kd 树后面会讲)。

参考文章:机器学习-kNN 算法

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/128790.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Mobx入门和较佳实践

    Mobx入门和较佳实践

    2021年6月18日
    104
  • NPTL, NGPT

    NPTL, NGPT

    2021年8月14日
    82
  • 【夏虫语冰】visio2013安装出错,您输入的产品密钥无法在此计算机上使用,错误25004[通俗易懂]

    【夏虫语冰】visio2013安装出错,您输入的产品密钥无法在此计算机上使用,错误25004[通俗易懂]问题的原因并不是您所下载的Office程序无法安装上去,而是所使用的密钥不能再授权安装和使用Office产品。如果在此电脑上之前已经安装并使用过了试用版本的Office的话,是不能重复不断地继续使用试用版本的Office和申请的授权密钥的。Office卸载工具有很多,下面介绍几个常见的工具:1、微软新版工具(未测试,微软官网无法下载)“SetupProd_OffScrub.exe”是微软新推出来Office卸载工具。下载链接&官方教程见下:从PC…

    2025年9月14日
    9
  • STL源码解析之vector自实现

    1.vector实现框架2.空间配置器空间配置器方面的内容在之前的博客已进行详细说明,查看->STL空间配置器解析和实现.3.内存基本处理工具(1)对象构造(2)Destroy(

    2021年12月28日
    37
  • app hybrid框架_混合式app

    app hybrid框架_混合式app几种APP开发模式概述当前的APP开发模式注意有以下四大类型:NativeApp 即传统的原生APP开发模式,Android基于Java语言,底层调用Google的API;iOS基于OC或者Swift语言,底层调用App官方提供的API。体验最后。 WebApp 即移动端的网站,将页面部署在服务器上,然后用户使用各大浏览器访问。一般泛指SPA(SinglePa…

    2022年9月2日
    6
  • Drupal Views教程[通俗易懂]

    Drupal Views教程[通俗易懂](一):简介打个比方来说明一下Views的作用:Drupal的核心就像一个毛坯房,墙窗户门都有了,也简单的粉刷过了,搬进来也能住;外观主题(Theme)就像室内装修,可以按照自己的喜好来铺地板或是地毯,选择各种各样喜欢的墙纸等等;模块呢,就好比家具,电器之类的,有了模块可以方便实现各种方便的功能,大部分模块都像冰箱电视一样,启动,摆在那里就行了,但是有些模块可以说是大工程,譬如C

    2022年5月4日
    79

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号