反向传播——通俗易懂[通俗易懂]

反向传播——通俗易懂[通俗易懂]最近在看深度学习的东西,一开始看的吴恩达的UFLDL教程,有中文版就直接看了,后来发现有些地方总是不是很明确,又去看英文版,然后又找了些资料看,才发现,中文版的译者在翻译的时候会对省略的公式推导过程进行补充,但是补充的又是错的,难怪觉得有问题。反向传播法其实是神经网络的基础了,但是很多人在学的时候总是会遇到一些问题,或者看到大篇的公式觉得好像很难就退缩了,其实不难,就是一个链式求导法则反复用。如果…

大家好,又见面了,我是你们的朋友全栈君。

最近在看深度学习的东西,一开始看的吴恩达的UFLDL教程,有中文版就直接看了,后来发现有些地方总是不是很明确,又去看英文版,然后又找了些资料看,才发现,中文版的译者在翻译的时候会对省略的公式推导过程进行补充,但是补充的又是错的,难怪觉得有问题。反向传播法其实是神经网络的基础了,但是很多人在学的时候总是会遇到一些问题,或者看到大篇的公式觉得好像很难就退缩了,其实不难,就是一个链式求导法则反复用。如果不想看公式,可以直接把数值带进去,实际的计算一下,体会一下这个过程之后再来推导公式,这样就会觉得很容易了。

  说到神经网络,大家看到这个图应该不陌生:

反向传播——通俗易懂[通俗易懂]

 

  这是典型的三层神经网络的基本构成,Layer L1是输入层,Layer L2是隐含层,Layer L3是隐含层,我们现在手里有一堆数据{x1,x2,x3,…,xn},输出也是一堆数据{y1,y2,y3,…,yn},现在要他们在隐含层做某种变换,让你把数据灌进去后得到你期望的输出。如果你希望你的输出和原始输入一样,那么就是最常见的自编码模型(Auto-Encoder)。可能有人会问,为什么要输入输出都一样呢?有什么用啊?其实应用挺广的,在图像识别,文本分类等等都会用到,我会专门再写一篇Auto-Encoder的文章来说明,包括一些变种之类的。如果你的输出和原始输入不一样,那么就是很常见的人工神经网络了,相当于让原始数据通过一个映射来得到我们想要的输出数据,也就是我们今天要讲的话题。

  本文直接举一个例子,带入数值演示反向传播法的过程,公式的推导等到下次写Auto-Encoder的时候再写,其实也很简单,感兴趣的同学可以自己推导下试试:)

  假设,你有这样一个网络层:

反向传播——通俗易懂[通俗易懂]

  第一层是输入层,包含两个神经元i1,i2,和截距项b1;第二层是隐含层,包含两个神经元h1,h2和截距项b2,第三层是输出o1,o2,每条线上标的wi是层与层之间连接的权重,激活函数我们默认为sigmoid函数。

  现在对他们赋上初值,如下图:

反向传播——通俗易懂[通俗易懂]

  其中,输入数据  i1=0.05,i2=0.10;

     输出数据 o1=0.01,o2=0.99;

     初始权重  w1=0.15,w2=0.20,w3=0.25,w4=0.30;

           w5=0.40,w6=0.45,w7=0.50,w8=0.55

 

  目标:给出输入数据i1,i2(0.05和0.10),使输出尽可能与原始输出o1,o2(0.01和0.99)接近。

 

  Step 1 前向传播

  1.输入层—->隐含层:

  计算神经元h1的输入加权和:

反向传播——通俗易懂[通俗易懂]

神经元h1的输出o1:(此处用到激活函数为sigmoid函数):

反向传播——通俗易懂[通俗易懂]

 

 

  同理,可计算出神经元h2的输出o2:

  反向传播——通俗易懂[通俗易懂]

 

  2.隐含层—->输出层:

  计算输出层神经元o1和o2的值:

  反向传播——通俗易懂[通俗易懂]

反向传播——通俗易懂[通俗易懂]

 

这样前向传播的过程就结束了,我们得到输出值为[0.75136079 , 0.772928465],与实际值[0.01 , 0.99]相差还很远,现在我们对误差进行反向传播,更新权值,重新计算输出。

 

Step 2 反向传播

1.计算总误差

总误差:(square error)

反向传播——通俗易懂[通俗易懂]

但是有两个输出,所以分别计算o1和o2的误差,总误差为两者之和:

反向传播——通俗易懂[通俗易懂]

反向传播——通俗易懂[通俗易懂]

反向传播——通俗易懂[通俗易懂]

 

2.隐含层—->输出层的权值更新:

以权重参数w5为例,如果我们想知道w5对整体误差产生了多少影响,可以用整体误差对w5求偏导求出:(链式法则)

反向传播——通俗易懂[通俗易懂]

下面的图可以更直观的看清楚误差是怎样反向传播的:

反向传播——通俗易懂[通俗易懂]

现在我们来分别计算每个式子的值:

计算反向传播——通俗易懂[通俗易懂]

反向传播——通俗易懂[通俗易懂]

计算反向传播——通俗易懂[通俗易懂]

反向传播——通俗易懂[通俗易懂]

(这一步实际上就是对sigmoid函数求导,比较简单,可以自己推导一下)

 

计算反向传播——通俗易懂[通俗易懂]

反向传播——通俗易懂[通俗易懂]

最后三者相乘:

反向传播——通俗易懂[通俗易懂]

这样我们就计算出整体误差E(total)对w5的偏导值。

回过头来再看看上面的公式,我们发现:

反向传播——通俗易懂[通俗易懂]

为了表达方便,用反向传播——通俗易懂[通俗易懂]来表示输出层的误差:

反向传播——通俗易懂[通俗易懂]

因此,整体误差E(total)对w5的偏导公式可以写成:

反向传播——通俗易懂[通俗易懂]

如果输出层误差计为负的话,也可以写成:

反向传播——通俗易懂[通俗易懂]

最后我们来更新w5的值:

反向传播——通俗易懂[通俗易懂]

(其中,反向传播——通俗易懂[通俗易懂]是学习速率,这里我们取0.5)

同理,可更新w6,w7,w8:

反向传播——通俗易懂[通俗易懂]

 

3.隐含层—->隐含层的权值更新:

 方法其实与上面说的差不多,但是有个地方需要变一下,在上文计算总误差对w5的偏导时,是从out(o1)—->net(o1)—->w5,但是在隐含层之间的权值更新时,是out(h1)—->net(h1)—->w1,而out(h1)会接受E(o1)和E(o2)两个地方传来的误差,所以这个地方两个都要计算。

 

反向传播——通俗易懂[通俗易懂]

 

计算反向传播——通俗易懂[通俗易懂]

反向传播——通俗易懂[通俗易懂]

先计算反向传播——通俗易懂[通俗易懂]

反向传播——通俗易懂[通俗易懂]

反向传播——通俗易懂[通俗易懂]

反向传播——通俗易懂[通俗易懂]

反向传播——通俗易懂[通俗易懂]

同理,计算出:

          反向传播——通俗易懂[通俗易懂]

两者相加得到总值:

反向传播——通俗易懂[通俗易懂]

再计算反向传播——通俗易懂[通俗易懂]

反向传播——通俗易懂[通俗易懂]

再计算反向传播——通俗易懂[通俗易懂]

反向传播——通俗易懂[通俗易懂]

最后,三者相乘:

反向传播——通俗易懂[通俗易懂]

 为了简化公式,用sigma(h1)表示隐含层单元h1的误差:

反向传播——通俗易懂[通俗易懂]

最后,更新w1的权值:

反向传播——通俗易懂[通俗易懂]

同理,额可更新w2,w3,w4的权值:

反向传播——通俗易懂[通俗易懂]

 

  这样误差反向传播法就完成了,最后我们再把更新的权值重新计算,不停地迭代,在这个例子中第一次迭代之后,总误差E(total)由0.298371109下降至0.291027924。迭代10000次后,总误差为0.000035085,输出为[0.015912196,0.984065734](原输入为[0.01,0.99]),证明效果还是不错的。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/130465.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Python数据类型有几种「建议收藏」

    Python数据类型有几种「建议收藏」数据类型是每种编程语言必备属性,只有给数据赋予明确的数据类型,计算机才能对数据进行处理运算,因此,正确使用数据类型是十分必要的,不同的语言,数据类型类似,但具体表示方法有所不同,以下是Python编程常用的数据类型:1.数字类型Python数字类型主要包括int(整型)、long(长整型)和float(浮点型),但是在Python3中就不再有long类型了。int(整型)在…

    2022年6月6日
    27
  • 手机发布版sha1怎么获取_android获取真实时间

    手机发布版sha1怎么获取_android获取真实时间Android安卓获取发布版SHA1生成打包密钥后打开黑窗口,进入打包密钥同级目录输入命令:keytool-list-v-keystore密钥名称例:keytool-list-v-keystoreappKey回车,输入密钥密码,获取发布版SHA1结束…

    2022年8月11日
    4
  • [QT] QMap使用详解

    [QT] QMap使用详解[QT]QMap使用详解一.目录1.实例化QMap对象2.插入数据3.移除数据4.遍历数据5.由键查找对应键值6.由键值查找键7.修改键值8.查找是否包含某个键9.获取所有的键和键值10.一个键对应多个值1.实例化QMap对象/*创建QMap实例,第一个参数为QString类型的键,第二个参数为int类型的值*/QMap<QString,int>map;2.插入数据/*插入数据两种方式*/

    2022年5月30日
    150
  • 卸载奇安信天擎,流氓软件怎么卸载_奇安信和360天擎

    卸载奇安信天擎,流氓软件怎么卸载_奇安信和360天擎奇安信天擎,很多朋友应该都不陌生,现在很多公司都要求每个员工的电脑上必须安装奇安信天擎这个软件,尤其是稍微大一点的公司,数据需要保密或容易被攻击的公司,奇安信可以有效的防御这些攻击。看到这是不是有朋友在想这不是一个很好的防御软件吗,为什么说是流氓软件呢?这个软件之所以叫它流氓软件,是因为这个软件一旦安装,既无法退出也无法卸载,有些朋友现在会想,这个软件就放那放着就好了啊,反正是防御的软件,我只能说你还没有了解奇安信的缺点。奇安信与一切杀毒软件冲突,公司要求安装奇安信,你就要把电脑之前的杀毒软件卸载,这

    2025年12月6日
    3
  • idea最新激活码2022【2021免费激活】

    (idea最新激活码2022)最近有小伙伴私信我,问我这边有没有免费的intellijIdea的激活码,然后我将全栈君台教程分享给他了。激活成功之后他一直表示感谢,哈哈~https://javaforall.net/100143.htmlIntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,上面是详细链接哦~0HKL…

    2022年3月31日
    53
  • Linux禁用防火墙规则的命令_linux 防火墙开启端口

    Linux禁用防火墙规则的命令_linux 防火墙开启端口linux防火墙有时候觉得太烦人了,想禁用下,该怎么办呢?下面由学习啦小编给你做出详细的linux防火墙禁用方法介绍!希望对你有帮助!linux防火墙禁用方法一:Linux中现主要有两套管理服务的软件。大多数的发行版使用SysVinit的系统启动进程管理体系,即service和chkconfig命令来配置和控制服务,例如CentOS6有些发行版则默认使用比较新的也是争议很大的systemd体系…

    2025年11月29日
    6

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号