最长回文子串(Longest Palindromic Substring)——三种时间复杂度的解法「建议收藏」

最长回文子串(Longest Palindromic Substring)——三种时间复杂度的解法「建议收藏」  子串:小于等于原字符串长度由原字符串中任意个连续字符组成的子序列  回文:关于中间字符对称的文法,即“aba”(单核)、“cabbac”(双核)等  最长回文子串:1.寻找回文子串;2.该子串是回文子串中长度最长的。一、O(n^3)时间复杂度方法——暴力求解1.思想:    1)从最长的子串开始,遍历所有该原字符串的子串;    2)每找出一个字符串,就判断该字符串是否为回文;  …

大家好,又见面了,我是你们的朋友全栈君。

    子串:小于等于原字符串长度由原字符串中任意个连续字符组成的子序列

    回文:关于中间字符对称的文法,即“aba”(单核)、“cabbac”(双核)等

    最长回文子串:1.寻找回文子串;2.该子串是回文子串中长度最长的。

一、O(n^3)时间复杂度方法——暴力求解

1.思想:

    1)从最长的子串开始,遍历所有该原字符串的子串;

    2)每找出一个字符串,就判断该字符串是否为回文;

    3)子串为回文时,则找到了最长的回文子串,因此结束;反之,则继续遍历。


2.时间复杂度解释:

    遍历字符串子串:嵌套一个循环、O(n^2);   

    判断是否为回文:再次嵌套一个循环、O(n^3)。


3.java代码详解:

    public static String longestPalindrome(String s) {

        if(s.length() <= 1)
            return s;
        for(int i = s.length();i > 0; i–) {//子串长度
            for (int j = 0; j <= s.length() – i; j++) {

                String sub = s.substring(j , i + j);//子串位置
                int count = 0;//计数,用来判断是否对称
                for (int k = 0; k < sub.length() / 2; k++) {//左右对称判断
                    if (sub.charAt(k) == sub.charAt(sub.length() – k – 1))
                        count++;
                }
                if (count == sub.length() / 2)
                    return sub;
            }
        }
        return “”;//表示字符串中无回文子串

    }


二、O(n^2)时间复杂度方法——从中心向外扩散

1.思想:

     1)将子串分为单核和双核的情况,单核即指子串长度为奇数,双核则为偶数;

    2)遍历每个除最后一个位置的字符index(字符位置),单核:初始low = 初始high = index,low和high均不超过原字符串的下限和上限;判断low和high处的字符是否相等,相等则low++、high++(双核:初始high = 初始low+1 = index + 1);

    3)每次low与high处的字符相等时,都将当前最长的回文子串长度与high-low+1比较。后者大时,将最长的回文子串改为low与high之间的;

    4)重复执行2)、3),直至high-low+1 等于原字符串长度或者遍历到最后一个字符,取当前截取到的回文子串,该子串即为最长的回文子串。


2.时间复杂度解释:

   遍历字符:一层循环、O(n-1);

   找以当前字符为中心的最长回文子串:嵌套两个独立循环、O(2n*(n-1)) = O(n^2)。


3.java代码详解:

private static int maxLen = 0;

private static String sub = “”;

public static String longestPalindrome(String s) {

        if(s.length() <= 1)
            return s;

        for(int i = 0;i < s.length()-1;i++){

            findLongestPalindrome(s,i,i);//单核回文

            findLongestPalindrome(s,i,i+1);//双核回文
        }
        return sub;
    }
    public static  void findLongestPalindrome(String s,int low,int high){

        while (low >= 0 && high <= s.length()-1){

            if(s.charAt(low) == s.charAt(high)){

                if(high – low + 1 > maxLen){

                    maxLen = high – low + 1;
                    sub = s.substring(low , high+1);
                }
                low –;//向两边扩散找当前字符为中心的最大回文子串
                high ++;
            }
            else
                break;
        }

    }


三、O(n)时间复杂度方法——Manacher算法

1.思想:

    1)将原字符串S的每个字符间都插入一个永远不会在S中出现的字符(本例中用“#”表示),在S的首尾也插入该字符,使得到的新字符串S_new长度为2*S.length()+1,保证Len的长度为奇数(下例中空格不表示字符,仅美观作用);

        例:S:       a  a  b  a  b  b  a

        S_new:        #  a  #  a  #  b  #  a  #  b  #  b  #  a  #

    2)根据S_new求出以每个字符为中心的最长回文子串的最右端字符距离该字符的距离,存入Len数组中,即S_new[i]—S_new[r]为S_new[i]的最长回文子串的右段(S_new[2i-r]—S_new[r]为以S_new[i]为中心的最长回文子串),Len[i] = r – i + 1;

        S_new:        #  a  #  a  #  b  #  a  #  b  #  b  #  a  #

        Len:            1  2  3  2  1   4  1  4  1  2  5   2  1  2  1

        Len数组性质:Len[i] – 1即为以Len[i]为中心的最长回文子串在S中的长度。在S_new中,以S_new[i]为中心的最长回文子串长度为2Len[i] – 1,由于在S_new中是在每个字符两侧都有新字符“#”,观察可知“#”的数量一定是比原字符多1的,即有Len[i]个,因此真实的回文子串长度为Len[i] – 1,最长回文子串长度为Math.max(Len) – 1。

    3)Len数组求解(线性复杂度(O(n))):

       a.遍历S_new数组,i为当前遍历到的位置,即求解以S_new[i]为中心的最长回文子串的Len[i];

       b.设置两个参数:sub_midd = Len.indexOf(Math.max(Len)表示在i之前所得到的Len数组中的最大值所在位置、sub_side = sub_midd + Len[sub_midd] – 1表示以sub_midd为中心的最长回文子串的最右端在S_new中的位置。起始sub_midd和sub_side设为0,从S_new中的第一个字母开始计算,每次计算后都需要更新sub_midd和sub_side;

      c.当i < sub_side时,取i关于sub_midd的对称点j(j = 2sub_midd – i,由于i <= sub_side,因此2sub_midd – sub_side <= j <= sub_midd);当Len[j] < sub_side – i时,即以S_new[j]为中心的最长回文子串是在以S_new[sub_midd]为中心的最长回文子串的内部,再由于i、j关于sub_midd对称,可知Len[i] = Len[j];

最长回文子串(Longest Palindromic Substring)——三种时间复杂度的解法「建议收藏」

    当Len[j] >= sub.side – i时说明以S_new[i]为中心的回文串可能延伸到sub_side之外,而大于sub_side的部分还没有进行匹配,所以要从sub_side+1位置开始进行匹配,直到匹配失败以后,从而更新sub_side和对应的sub_midd以及Len[i];

最长回文子串(Longest Palindromic Substring)——三种时间复杂度的解法「建议收藏」

        d.当i > sub_side时,则说明以S_new[i]为中心的最长回文子串还没开始匹配寻找,因此需要一个一个进行匹配寻找,结束后更新sub_side和对应的sub_midd以及Len[i]。

最长回文子串(Longest Palindromic Substring)——三种时间复杂度的解法「建议收藏」


2.时间复杂度解释:

        算法只有遇到还没匹配的位置时才进行匹配,已经匹配过的位置不再进行匹配,因此大大的减少了重复匹配的步骤,对于S_new中的每个字符只进行一次匹配。所以该算法的时间复杂度为O(2n+1)—>O(n)(n为原字符串的长度),所以其时间复杂度依旧是线性的。


3.java代码详解:

public String longestPalindrome(String s) {

        List<Character> s_new = new ArrayList<>();
        for(int i = 0;i < s.length();i++){

            s_new.add(‘#’);
            s_new.add(s.charAt(i));
        }
        s_new.add(‘#’);
        List<Integer> Len = new ArrayList<>();
        String sub = “”;//最长回文子串
        int sub_midd = 0;//表示在i之前所得到的Len数组中的最大值所在位置
        int sub_side = 0;//表示以sub_midd为中心的最长回文子串的最右端在S_new中的位置
        Len.add(1);
        for(int i = 1;i < s_new.size();i++){

            if(i < sub_side) {//i < sub_side时,在Len[j]和sub_side – i中取最小值,省去了j的判断
                int j = 2 * sub_midd – i;
                if(j >= 2 * sub_midd – sub_side &&  Len.get(j) <= sub_side – i){

                    Len.add(Len.get(j));
                }
                else
                    Len.add(sub_side – i + 1);
            }
            else//i >= sub_side时,从头开始匹配
                Len.add(1);
            while( (i – Len.get(i) >= 0 && i + Len.get(i) < s_new.size()) && (s_new.get(i – Len.get(i)) == s_new.get(i + Len.get(i))))
                Len.set(i,Len.get(i) + 1);//s_new[i]两端开始扩展匹配,直到匹配失败时停止
            if(Len.get(i) >= Len.get(sub_midd)){//匹配的新回文子串长度大于原有的长度
                sub_side = Len.get(i) + i – 1;
                sub_midd = i;
            }
        }
        sub = s.substring((2*sub_midd – sub_side)/2,sub_side /2);//在s中找到最长回文子串的位置
        return sub;

    }

写这篇博客也是为了加深印象,希望可以通过这种方式来提高学习效率。共勉!





    

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/130512.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • IDEA和MySQL数据库建立连接

    IDEA和MySQL数据库建立连接IDEA和MySQL数据库建立连接操作步骤如下:1.打开IDEA软件,点击顶部导航栏的View–>ToolWindows–>Database(或者直接点击右侧边上的Database),在右侧打开的Database框里,点击左上角的+–>DataSource–>MySQL。2.填入自己的MySQL数据库信息(账户默认root,密码是自己设置的),Database里面填写要连接的数据库名称,填好后点击下方的TestConnection。3.这

    2022年7月19日
    32
  • Parallel.Foreach的全部知识要点【转】[通俗易懂]

    Parallel.Foreach的全部知识要点【转】[通俗易懂]简介当需要为多核机器进行优化的时候,最好先检查下你的程序是否有处理能够分割开来进行并行处理。(例如,有一个巨大的数据集合,其中的元素需要一个一个进行彼此独立的耗时计算)。.netframework4中提供了Parallel.ForEach和PLINQ来帮助我们进行并行处理,本文探讨这两者的差别及适用的场景。Parallel.ForEachParallel.F…

    2022年7月19日
    18
  • 开始laravel项目+理解

    开始laravel项目+理解一.laravel运行理解Ⅰ.开始,public/index.php此文件有两个作用。①:作为入口的起点,引导构建服务所需要的一切(包括路由,服务容器之类的)。②:作为所有请求的必经之路。请求经过此文件,会被“指派”到合适的路由,中间件等等进行处理。tips:所以用phpstudy的时候,记得设置一下①指定项目的根目录。②指定下路由。我用的nginx,设置的vhost.config文件。画起第一行用以指定项目的根目录,就apache的www文件的意思。第二行是指定所有请求最终会定向

    2022年5月7日
    37
  • PyQuery 详解「建议收藏」

    PyQuery 详解「建议收藏」PyQuery库是一个非常强大又灵活的网页解析库,如果你有前端开发经验,那么你应该接触过jQuery,那么PyQuery就是你非常绝佳的选择,PyQuery是Python仿照jQuery的严格实现,语法与jQuery几乎完全相同。安装跟安装其他库一样:>>>pip3installpyquery安装了之后,在程序里面就可以引用了,引用方法跟其他…

    2022年5月31日
    35
  • 网站安全检测:推荐8款免费的 Web 安全测试工具「建议收藏」

    随着Web应用越来越广泛,Web安全威胁日益凸显。黑客利用网站操作系统的漏洞和Web服务程序的SQL注入漏洞等得到Web服务器的控制权限,轻则篡改网页内容,重则窃取重要内部数据,更为严重的则是在网页中植入恶意代码,使得网站访问者受到侵害。这也使得越来越多的用户关注应用层的安全问题,对Web应用安全的关注度也逐渐升温。下面向大家推荐8款非常有用的免费 Web安全测试工具。

    2022年4月10日
    54
  • 启动docker镜像命令_什么是docker镜像

    启动docker镜像命令_什么是docker镜像docker启动//加载镜像文件dockerload-imec2.tar//查看是否有mec:v2镜像dockerimagels//rundockerrun-itdmec:v2//查看容器iddockerps//执行dockerexec-it镜像idbash将文件从宿主机拷贝到docker里在宿主机里面执:dockercp宿主机中要拷贝的文件名及其路径容器名:要拷贝到容器里面对应的路径从docker里面拷文件到宿主机在宿主机

    2022年9月22日
    0

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号