FPN(feature pyramid networks)算法讲解「建议收藏」

FPN(feature pyramid networks)算法讲解「建议收藏」这篇论文是CVPR2017年的文章,采用特征金字塔做目标检测,有许多亮点,特来分享。论文:featurepyramidnetworksforobjectdetection论文链接:https://arxiv.org/abs/1612.03144论文概述:作者提出的多尺度的objectdetection算法:FPN(featurepyramidnetworks)。原来多数的

大家好,又见面了,我是你们的朋友全栈君。

这篇论文是CVPR2017年的文章,采用特征金字塔做目标检测,有许多亮点,特来分享。

论文:feature pyramid networks for object detection
论文链接:https://arxiv.org/abs/1612.03144

论文概述:

作者提出的多尺度的object detection算法:FPN(feature pyramid networks)。原来多数的object detection算法都是只采用顶层特征做预测,但我们知道低层的特征语义信息比较少,但是目标位置准确;高层的特征语义信息比较丰富,但是目标位置比较粗略。另外虽然也有些算法采用多尺度特征融合的方式,但是一般是采用融合后的特征做预测,而本文不一样的地方在于预测是在不同特征层独立进行的。
代码的话应该过段时间就会开源。

论文详解:

下图FIg1展示了4种利用特征的形式:
(a)图像金字塔,即将图像做成不同的scale,然后不同scale的图像生成对应的不同scale的特征。这种方法的缺点在于增加了时间成本。有些算法会在测试时候采用图像金字塔。
(b)像SPP net,Fast RCNN,Faster RCNN是采用这种方式,即仅采用网络最后一层的特征。
(c)像SSD(Single Shot Detector)采用这种多尺度特征融合的方式,没有上采样过程,即从网络不同层抽取不同尺度的特征做预测,这种方式不会增加额外的计算量。作者认为SSD算法中没有用到足够低层的特征(在SSD中,最低层的特征是VGG网络的conv4_3),而在作者看来足够低层的特征对于检测小物体是很有帮助的。
(d)本文作者是采用这种方式,顶层特征通过上采样和低层特征做融合,而且每层都是独立预测的。

这里写图片描述

如下图Fig2。上面一个带有skip connection的网络结构在预测的时候是在finest level(自顶向下的最后一层)进行的,简单讲就是经过多次上采样并融合特征到最后一步,拿最后一步生成的特征做预测。而下面一个网络结构和上面的类似,区别在于预测是在每一层中独立进行的。后面有这两种结构的实验结果对比,非常有意思,因为之前只见过使用第一种特征融合的方式。

这里写图片描述

作者的主网络采用ResNet。
作者的算法大致结构如下Fig3:一个自底向上的线路,一个自顶向下的线路,横向连接(lateral connection)。图中放大的区域就是横向连接,这里1*1的卷积核的主要作用是减少卷积核的个数,也就是减少了feature map的个数,并不改变feature map的尺寸大小。

这里写图片描述

自底向上其实就是网络的前向过程。在前向过程中,feature map的大小在经过某些层后会改变,而在经过其他一些层的时候不会改变,作者将不改变feature map大小的层归为一个stage,因此每次抽取的特征都是每个stage的最后一个层输出,这样就能构成特征金字塔。
自顶向下的过程采用上采样(upsampling)进行,而横向连接则是将上采样的结果和自底向上生成的相同大小的feature map进行融合(merge)。在融合之后还会再采用3*3的卷积核对每个融合结果进行卷积,目的是消除上采样的混叠效应(aliasing effect)。并假设生成的feature map结果是P2,P3,P4,P5,和原来自底向上的卷积结果C2,C3,C4,C5一一对应。

贴一个ResNet的结构图:这里作者采用Conv2,CONV3,CONV4和CONV5的输出。因此类似Conv2就可以看做一个stage。

这里写图片描述

作者一方面将FPN放在RPN网络中用于生成proposal,原来的RPN网络是以主网络的某个卷积层输出的feature map作为输入,简单讲就是只用这一个尺度的feature map。但是现在要将FPN嵌在RPN网络中,生成不同尺度特征并融合作为RPN网络的输入。在每一个scale层,都定义了不同大小的anchor,对于P2,P3,P4,P5,P6这些层,定义anchor的大小为32^2,64^2,128^2,256^2,512^2,另外每个scale层都有3个长宽对比度:1:2,1:1,2:1。所以整个特征金字塔有15种anchor。

正负样本的界定和Faster RCNN差不多:如果某个anchor和一个给定的ground truth有最高的IOU或者和任意一个Ground truth的IOU都大于0.7,则是正样本。如果一个anchor和任意一个ground truth的IOU都小于0.3,则为负样本。

看看加入FPN的RPN网络的有效性,如下表Table1。网络这些结果都是基于ResNet-50。评价标准采用AR,AR表示Average Recall,AR右上角的100表示每张图像有100个anchor,AR的右下角s,m,l表示COCO数据集中object的大小分别是小,中,大。feature列的大括号{}表示每层独立预测。

这里写图片描述

从(a)(b)(c)的对比可以看出FRN的作用确实很明显。另外(a)和(b)的对比可以看出高层特征并非比低一层的特征有效。
(d)表示只有横向连接,而没有自顶向下的过程,也就是仅仅对自底向上(bottom-up)的每一层结果做一个1*1的横向连接和3*3的卷积得到最终的结果,有点像Fig1的(b)从feature列可以看出预测还是分层独立的。作者推测(d)的结果并不好的原因在于在自底向上的不同层之间的semantic gaps比较大。
(e)表示有自顶向下的过程,但是没有横向连接,即向下过程没有融合原来的特征。这样效果也不好的原因在于目标的location特征在经过多次降采样和上采样过程后变得更加不准确。
(f)采用finest level层做预测(参考Fig2的上面那个结构),即经过多次特征上采样和融合到最后一步生成的特征用于预测,主要是证明金字塔分层独立预测的表达能力。显然finest level的效果不如FPN好,原因在于PRN网络是一个窗口大小固定的滑动窗口检测器,因此在金字塔的不同层滑动可以增加其对尺度变化的鲁棒性。另外(f)有更多的anchor,说明增加anchor的数量并不能有效提高准确率。

另一方面将FPN用于Fast R-CNN的检测部分。除了(a)以外,分类层和卷积层之前添加了2个1024维的全连接层。细节地方可以等代码出来后再研究。
实验结果如下表Table2,这里是测试Fast R-CNN的检测效果,所以proposal是固定的(采用Table1(c)的做法)。与Table1的比较类似,(a)(b)(c)的对比证明在基于区域的目标卷积问题中,特征金字塔比单尺度特征更有效。(c)(f)的差距很小,作者认为原因是ROI pooling对于region的尺度并不敏感。因此并不能一概认为(f)这种特征融合的方式不好,博主个人认为要针对具体问题来看待,像上面在RPN网络中,可能(f)这种方式不大好,但是在Fast RCNN中就没那么明显。

这里写图片描述

同理,将FPN用于Faster RCNN的实验结果如下表Table3。

这里写图片描述

下表Table4是和近几年在COCO比赛上排名靠前的算法的对比。注意到本文算法在小物体检测上的提升是比较明显的。

这里写图片描述

另外作者强调这些实验并没有采用其他的提升方法(比如增加数据集,迭代回归,hard negative mining),因此能达到这样的结果实属不易。

总结

作者提出的FPN(Feature Pyramid Network)算法同时利用低层特征高分辨率和高层特征的高语义信息,通过融合这些不同层的特征达到预测的效果。并且预测是在每个融合后的特征层上单独进行的,这和常规的特征融合方式不同。
期待代码

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/130577.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Android面试题集锦(2022最新总结)

    Android面试题集锦(2022最新总结)“技术岗年薪总包41W起步,而大厂薪资最高评级SSP总包58W,接近60W,远高于非技术岗人员。”2022年校招,腾讯应届生薪资开奖“第一炮”打响。和去年相比,涨了近10万,且应届生房补也从1250元上升到了4000元。这样的薪资待遇,试问谁不眼馋呢?2021年,行业环境其实稍显颓势,年末那一波大厂裁员更是让互联网人心惶惶。但是,2022年一开端我们会发现,各家依旧抛出高薪的橄榄枝,丝毫未停歇对技术岗人才的抢夺。目前的招聘情况业内人概括为:校招抢人,时间提前,薪资飞涨;同时也不放过任何一个社招.

    2022年8月26日
    12
  • centos查看mysql端口「建议收藏」

    centos查看mysql端口「建议收藏」centos查看mysql端口showglobalvariableslike’port’;

    2022年9月26日
    2
  • bootstraptable之uniqueId

    bootstraptable之uniqueId如何设置每行唯一的标识符uniqueId$(‘#dataTable’).bootstrapTable(‘destroy’).bootstrapTable({columns:[{field:’OrganizeID’,title:’部门编号’,…

    2025年7月29日
    3
  • Linux系统开启IPv6任播(anycast)地址[通俗易懂]

    Linux系统开启IPv6任播(anycast)地址[通俗易懂]这两年真是在linux上各种掏捡,各种零碎。。。无力吐槽了。。。下面简单记录一下开启任播地址我的系统是Debian7.21、开启IPv6转发sudoecho1>/proc/sys/net/ipv6/conf/all/forwarding2、完了系统会自动生成IPv6任播地址cat/proc/net/anycast6此时你在网卡上新配置一个IPv6地址,就会在/proc/net/anycast6下生成一个对应的任播地址。在另一台主机上你可以ping6一下其中一个任.

    2022年5月23日
    54
  • UVA 10600 ACM contest and Blackout(次小生成树)

    UVA 10600 ACM contest and Blackout(次小生成树)

    2021年9月4日
    56
  • 狂神说java系列笔记下载(跟狂神相似的小说)

    狂神说Vue笔记​ 想要成为真正的“互联网Java全栈工程师”还有很长的一段路要走,其中前端是绕不开的一门必修课。本阶段课程的主要目的就是带领Java后台程序员认识前端、了解前端、掌握前端,为实现成为“互联网Java全栈工程师”再向前迈进一步。一、前端核心分析1.1、概述Soc原则:关注点分离原则Vue的核心库只关注视图层,方便与第三方库或既有项目整合。HTML+CSS+JS:视图:给用户看,刷新后台给的数据网络通信:axios页面跳转:vue-router状态管

    2022年4月18日
    40

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号