PriorityQueue解析

PriorityQueue解析转载出自于深入理解JavaPriorityQueueJava中PriorityQueue通过二叉小顶堆实现,可以用一棵完全二叉树表示。本文从Queue接口函数出发,结合生动的图解,深入浅出地分析PriorityQueue每个操作的具体过程和时间复杂度,将让读者建立对PriorityQueue建立清晰而深入的认识。总体介绍前面以JavaArrayDeque为例讲解了Stack和Q

大家好,又见面了,我是你们的朋友全栈君。

转载出自于深入理解Java PriorityQueue

Java中PriorityQueue通过二叉小顶堆实现,可以用一棵完全二叉树表示。本文从Queue接口函数出发,结合生动的图解,深入浅出地分析PriorityQueue每个操作的具体过程和时间复杂度,将让读者建立对PriorityQueue建立清晰而深入的认识。

总体介绍

前面以Java ArrayDeque为例讲解了StackQueue,其实还有一种特殊的队列叫做PriorityQueue,即优先队列。优先队列的作用是能保证每次取出的元素都是队列中权值最小的(Java的优先队列每次取最小元素,C++的优先队列每次取最大元素)。这里牵涉到了大小关系,元素大小的评判可以通过元素本身的自然顺序(natural ordering),也可以通过构造时传入的比较器Comparator,类似于C++的仿函数)。

Java中PriorityQueue实现了Queue接口,不允许放入null元素;其通过堆实现,具体说是通过完全二叉树(complete binary tree)实现的小顶堆(任意一个非叶子节点的权值,都不大于其左右子节点的权值),也就意味着可以通过数组来作为PriorityQueue的底层实现。

PriorityQueue_base.png

上图中我们给每个元素按照层序遍历的方式进行了编号,如果你足够细心,会发现父节点和子节点的编号是有联系的,更确切的说父子节点的编号之间有如下关系:

leftNo = parentNo*2+1

rightNo = parentNo*2+2

parentNo = (nodeNo-1)/2

通过上述三个公式,可以轻易计算出某个节点的父节点以及子节点的下标。这也就是为什么可以直接用数组来存储堆的原因。

PriorityQueuepeek()element操作是常数时间,add(), offer(), 无参数的remove()以及poll()方法的时间复杂度都是log(N)

方法剖析

add()和offer()

add(E e)offer(E e)的语义相同,都是向优先队列中插入元素,只是Queue接口规定二者对插入失败时的处理不同,前者在插入失败时抛出异常,后则则会返回false。对于PriorityQueue这两个方法其实没什么差别。

PriorityQueue_offer.png

新加入的元素可能会破坏小顶堆的性质,因此需要进行必要的调整。

//offer(E e) public boolean offer(E e) { if (e == null)//不允许放入null元素 throw new NullPointerException(); modCount++; int i = size; if (i >= queue.length) grow(i + 1);//自动扩容 size = i + 1; if (i == 0)//队列原来为空,这是插入的第一个元素 queue[0] = e; else siftUp(i, e);//调整 return true; }

上述代码中,扩容函数grow()类似于ArrayList里的grow()函数,就是再申请一个更大的数组,并将原数组的元素复制过去,这里不再赘述。需要注意的是siftUp(int k, E x)方法,该方法用于插入元素x并维持堆的特性。

//siftUp() private void siftUp(int k, E x) { while (k > 0) { int parent = (k - 1) >>> 1;//parentNo = (nodeNo-1)/2 Object e = queue[parent]; if (comparator.compare(x, (E) e) >= 0)//调用比较器的比较方法 break; queue[k] = e; k = parent; } queue[k] = x; }

新加入的元素x可能会破坏小顶堆的性质,因此需要进行调整。调整的过程为:k指定的位置开始,将x逐层与当前点的parent进行比较并交换,直到满足x >= queue[parent]为止。注意这里的比较可以是元素的自然顺序,也可以是依靠比较器的顺序。

element()和peek()

element()peek()的语义完全相同,都是获取但不删除队首元素,也就是队列中权值最小的那个元素,二者唯一的区别是当方法失败时前者抛出异常,后者返回null。根据小顶堆的性质,堆顶那个元素就是全局最小的那个;由于堆用数组表示,根据下标关系,0下标处的那个元素既是堆顶元素。所以直接返回数组0下标处的那个元素即可

PriorityQueue_peek.png

代码也就非常简洁:

//peek() public E peek() { if (size == 0) return null; return (E) queue[0];//0下标处的那个元素就是最小的那个 }

remove()和poll()

remove()poll()方法的语义也完全相同,都是获取并删除队首元素,区别是当方法失败时前者抛出异常,后者返回null。由于删除操作会改变队列的结构,为维护小顶堆的性质,需要进行必要的调整。

PriorityQueue_poll.png
代码如下:

public E poll() { if (size == 0) return null; int s = --size; modCount++; E result = (E) queue[0];//0下标处的那个元素就是最小的那个 E x = (E) queue[s]; queue[s] = null; if (s != 0) siftDown(0, x);//调整 return result; }

上述代码首先记录0下标处的元素,并用最后一个元素替换0下标位置的元素,之后调用siftDown()方法对堆进行调整,最后返回原来0下标处的那个元素(也就是最小的那个元素)。重点是siftDown(int k, E x)方法,该方法的作用是k指定的位置开始,将x逐层向下与当前点的左右孩子中较小的那个交换,直到x小于或等于左右孩子中的任何一个为止

//siftDown() private void siftDown(int k, E x) { int half = size >>> 1; while (k < half) { //首先找到左右孩子中较小的那个,记录到c里,并用child记录其下标 int child = (k << 1) + 1;//leftNo = parentNo*2+1 Object c = queue[child]; int right = child + 1; if (right < size && comparator.compare((E) c, (E) queue[right]) > 0) c = queue[child = right]; if (comparator.compare(x, (E) c) <= 0) break; queue[k] = c;//然后用c取代原来的值 k = child; } queue[k] = x; }

remove(Object o)

remove(Object o)方法用于删除队列中跟o相等的某一个元素(如果有多个相等,只删除一个),该方法不是Queue接口内的方法,而是Collection接口的方法。由于删除操作会改变队列结构,所以要进行调整;又由于删除元素的位置可能是任意的,所以调整过程比其它函数稍加繁琐。具体来说,remove(Object o)可以分为2种情况:1. 删除的是最后一个元素。直接删除即可,不需要调整。2. 删除的不是最后一个元素,从删除点开始以最后一个元素为参照调用一次siftDown()即可。此处不再赘述。

PriorityQueue_remove2.png

具体代码如下:

//remove(Object o) public boolean remove(Object o) { //通过遍历数组的方式找到第一个满足o.equals(queue[i])元素的下标 int i = indexOf(o); if (i == -1) return false; int s = --size; if (s == i) //情况1 queue[i] = null; else { E moved = (E) queue[s]; queue[s] = null; siftDown(i, moved);//情况2 ...... } return true; }
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/131972.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • UnicodeEncodeError: ‘gbk’ codec can’t encode character ‘\U0001f914’ in posit[通俗易懂]

    UnicodeEncodeError: ‘gbk’ codec can’t encode character ‘\U0001f914’ in posit[通俗易懂]原码#保存爬取结果(微博评论)result.to_csv(‘egg_comment.csv’,encoding=’gbk’)报错UnicodeEncodeError:’gbk’codeccan’tencodecharacter’\U0001f914’inposit原因网上很多内容都是采用utf8编码的,gbk无法编码字符’\U0001f914’,所以’utf8’格式…

    2025年6月11日
    0
  • ArcGIS二次开发基础教程(07):简单符号及图层渲染「建议收藏」

    ArcGIS二次开发基础教程(07):简单符号及图层渲染「建议收藏」ArcGIS二次开发基础教程(07):简单符号及图层渲染简单渲染0.点渲染IGeoFeatureLayerGetLayerByName(stringname){ILayerlayer=null;for(inti=0;i<axMapConTrol1.LayerCount;i++){layer=axMapControl1….

    2022年7月23日
    12
  • 黑盒测试用例设计 一[通俗易懂]

    黑盒测试用例设计 一[通俗易懂]简介: 总结黑盒测试用例的常用设计方法等价类划分一、方法简介1.定义把所有可能的输入数据,即程序的输入域划分成若干部分(子集),然后从每一个子集中选取少数具有代表性的数据作为测试用例2.划分等价类:等价类是指某个输入域的子集合。在该子集合中,各个输入数据对于揭露程序中的错误都是等效的。等价类划分可有两种不同的情况:有效等价类和无效等价类。(1)有效等价类是指对于程序的规格说明来说是…

    2022年6月12日
    31
  • 项目开发序言「建议收藏」

    项目开发序言「建议收藏」今天决定换成uni-app来开发。用到的工具:HBuilder +微信开发者工具 + 小程序appid1.功能概述 消费者端:分为首页、商城、我的 首页:banner广告展示、菜品预览 商城:banner广告展示、全部商品、热销商品、公益、非遗 我的:积分和信用分的展示、我的兑换、今日签到、设置 商家端:功能、我的 功能:…

    2022年8月18日
    6
  • vue如何生成二维码_vue实现扫描二维码

    vue如何生成二维码_vue实现扫描二维码这里介绍两种vue生成二维码的方法QRcodevue-qrvue-qr比QRcode功能多在可以在中间加logo下面先介绍QRcodevue里安装qrcodejs的npm包npminstallqrcodejs2importQRCodefrom‘qrcodejs2’methods:{creatQrCode(){varqrcode=newQRCode(t…

    2022年10月3日
    0
  • MySQL的多表查询(笛卡尔积原理)

    MySQL的多表查询(笛卡尔积原理)Mysql查询多表查询笛卡尔积原理

    2022年7月4日
    22

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号