Java BigDecimal详解

Java BigDecimal详解1.引言       借用《EffactiveJava》这本书中的话,float和double类型的主要设计目标是为了科学计算和工程计算。他们执行二进制浮点运算,这是为了在广域数值范围上提供较为精确的快速近似计算而精心设计的。然而,它们没有提供完全精确的结果,所以不应该被用于要求精确结果的场合。但是,商业计算往往要求结果精确,这时候BigDecimal就派上大用场啦。 2.BigD

大家好,又见面了,我是你们的朋友全栈君。

1.引言

        借用《Effactive Java》这本书中的话,float和double类型的主要设计目标是为了科学计算和工程计算。他们执行二进制浮点运算,这是为了在广域数值范围上提供较为精确的快速近似计算而精心设计的。然而,它们没有提供完全精确的结果,所以不应该被用于要求精确结果的场合。但是,商业计算往往要求结果精确,这时候BigDecimal就派上大用场啦。

 

2.BigDecimal简介

        BigDecimal 由任意精度的整数非标度值 和32 位的整数标度 (scale) 组成。如果为零或正数,则标度是小数点后的位数。如果为负数,则将该数的非标度值乘以 10 的负scale 次幂。因此,BigDecimal表示的数值是(unscaledValue × 10-scale)

 

3.测试代码

3.1构造函数(主要测试参数类型为double和String的两个常用构造函数)

       BigDecimal aDouble =new BigDecimal(1.22);

        System.out.println(“construct with a double value: “ + aDouble);

        BigDecimal aString = new BigDecimal(“1.22”);

         System.out.println(“construct with a String value: “ + aString);

        你认为输出结果会是什么呢?如果你没有认为第一个会输出1.22,那么恭喜你答对了,输出结果如下:

         construct with a doublevalue:1.2199999999999999733546474089962430298328399658203125

         construct with a String value: 1.22

        JDK的描述:1、参数类型为double的构造方法的结果有一定的不可预知性。有人可能认为在Java中写入newBigDecimal(0.1)所创建的BigDecimal正好等于 0.1(非标度值 1,其标度为 1),但是它实际上等于0.1000000000000000055511151231257827021181583404541015625。这是因为0.1无法准确地表示为 double(或者说对于该情况,不能表示为任何有限长度的二进制小数)。这样,传入到构造方法的值不会正好等于 0.1(虽然表面上等于该值)。

        2、另一方面,String 构造方法是完全可预知的:写入 newBigDecimal(“0.1”) 将创建一个 BigDecimal,它正好等于预期的 0.1。因此,比较而言,通常建议优先使用String构造方法

        3、double必须用作BigDecimal的源时,请注意,此构造方法提供了一个准确转换;它不提供与以下操作相同的结果:先使用Double.toString(double)方法,然后使用BigDecimal(String)构造方法,将double转换为String。要获取该结果,请使用static valueOf(double)方法。

3.2 加法操作

        BigDecimal a =new BigDecimal(“1.22”);

        System.out.println(“construct with a String value:  + a);

        BigDecimal b =new BigDecimal(“2.22”);

        a.add(b);

        System.out.println(“aplus b is : “ + a);

        我们很容易会认为会输出:

        construct with a Stringvalue: 1.22

        a plus b is :3.44

        但实际上a plus b is : 1.22

4.源码分析

4.1 valueOf(doubleval)方法

    public   static BigDecimal valueOf(double val) {

       // Reminder: a zero double returns ‘0.0’, so we cannotfastpath

       // to use the constant ZERO. This might be important enough to

       // justify a factory approach, a cache, or a few private

       // constants, later.

       returnnew BigDecimal(Double.toString(val));//3.1关于JDK描述的第三点

    }

4.2 add(BigDecimal augend)方法

      public BigDecimal   add(BigDecimal augend) {

          long xs =this.intCompact; //整型数字表示的BigDecimal,aintCompact值为122

          long ys = augend.intCompact;//同上

          BigInteger fst = (this.intCompact !=INFLATED) ?null :this.intVal;//初始化BigInteger的值,intValBigDecimal的一个BigInteger类型的属性

          BigInteger snd =(augend.intCompact !=INFLATED) ?null : augend.intVal;

          int rscale =this.scale;//小数位数

 

          long sdiff = (long)rscale – augend.scale;//小数位数之差

          if (sdiff != 0) {
//取小数位数多的为结果的小数位数

              if (sdiff < 0) {

                 int raise =checkScale(-sdiff);

                 rscale =augend.scale;

                 if (xs ==INFLATED ||

                     (xs = longMultiplyPowerTen(xs,raise)) ==INFLATED)

                     fst =bigMultiplyPowerTen(raise);

                }else {

                   int raise =augend.checkScale(sdiff);

                   if (ys ==INFLATED ||(ys =longMultiplyPowerTen(ys,raise)) ==INFLATED)

                       snd = augend.bigMultiplyPowerTen(raise);

               }

          }

          if (xs !=INFLATED && ys !=INFLATED) {

              long sum = xs + ys;

              if ( (((sum ^ xs) &(sum ^ ys))) >= 0L)//判断有无溢出

                 return BigDecimal.valueOf(sum,rscale);//返回使用BigDecimal的静态工厂方法得到的BigDecimal实例

           }

           if (fst ==null)

               fst =BigInteger.valueOf(xs);//BigInteger的静态工厂方法

           if (snd ==null)

               snd =BigInteger.valueOf(ys);

           BigInteger sum =fst.add(snd);

           return (fst.signum == snd.signum) ?new BigDecimal(sum,INFLATED, rscale, 0) :

              new BigDecimal(sum,compactValFor(sum),rscale, 0);//返回通过其他构造方法得到的BigDecimal对象

       }

 

        以上只是对加法源码的分析,减乘除其实最终都返回的是一个新的BigDecimal对象,因为BigIntegerBigDecimal都是不可变的(immutable)的,在进行每一步运算时,都会产生一个新的对象,所以a.add(b);虽然做了加法操作,但是a并没有保存加操作后的值,正确的用法应该是a=a.add(b);

 

5.总结

        (1)商业计算使用BigDecimal。

        (2)尽量使用参数类型为String的构造函数。

        (3) BigDecimal都是不可变的(immutable)的,在进行每一步运算时,都会产生一个新的对象,所以在做加减乘除运算时千万要保存操作后的值。

        (4)我们往往容易忽略JDK底层的一些实现细节,导致出现错误,需要多加注意。

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/134227.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • PXE部署

    PXE部署笑洋仟博客园首页新随笔联系订阅管理随笔-51文章-0评论-0阅读-2177PXE高效批量网络装机阅读目录(Content)一、PXE概述 1、PXE(PrebooteXcutionEnvironment)的概念 2、PXE批量部署的优点 3、部署PXE远程安装服务 4、搭建PXE远程安装服务器 二、搭建PXE远程安装服务器的步骤 1、安装启用TFTP服务 2、安装启用DHCP服务  …

    2022年6月29日
    23
  • 十一招解决:系统IE部分网页打不开怎么办(转载)

    十一招解决:系统IE部分网页打不开怎么办(转载)

    2021年12月2日
    41
  • 毫米波雷达跟激光雷达_毫米波雷达市场

    毫米波雷达跟激光雷达_毫米波雷达市场文章目录激光雷达超声波雷达摄像头毫米波雷达激光雷达激光雷达的波长介于750nm-950nm之间,以单线或多线束机制辐射光束,接收目标或环境的反射信号,以回波时间差和波束指向测量目标的距离和角度等空间位置参数。激光雷达主要优点如下:(1)波长短,测量精度高(2)多线束的探测,可以实现对场景的三维成像。激光雷达的主要缺点是:(1)抗干扰能力低,易受天气影响,在雨雪雾等天气的作用下,激光雷达使用受限。(2)激光发射、被测目标表面粗糙等因素都对测量精度有影响。(3)结构复杂,除激光

    2022年9月11日
    0
  • mysql中的数据库对用户权限做限制

    mysql中的数据库对用户权限做限制

    2021年7月22日
    67
  • Python:2D画图库matplotlib学习总结[通俗易懂]

    Python:2D画图库matplotlib学习总结

    2022年1月27日
    102
  • disk boot failure ,insert sysytem disk and press enter解决方法

    disk boot failure ,insert sysytem disk and press enter解决方法故障分析与处理从现象上看硬盘可能是损坏了,如果在无法启动前的最后一次关机是按照正常程序退出。将硬盘拆下来连接到另外一台机器上,开机启动后进入CMOS设置主菜单,选择“IDE HDD AUTO DETECTION”栏,检测到硬盘参数,能正常进入硬盘。将硬盘装回到原来的机器上,进入CMOS设置后能自动检测到硬盘的参数,恢复了正常启动。关机时按照正常程序退出,而下一次开机时无法用硬盘启动并且无

    2022年7月13日
    16

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号