基于opencv人脸识别

基于opencv人脸识别一、准备所有代码上传至https://pan.baidu.com/s/1ETUetRnU83iytb6ZcE5GUQ提取码:0jei环境:win10,vs2013,opencv3.2注:每个代码都可以在vs中单独运行该项目所有文件如下:其中只需要使用的文件如下:详细代码://这个是生成照片的代码#include<opencv2…

大家好,又见面了,我是你们的朋友全栈君。

一、准备

链接:代码+数据集
提取码:led1 

环境:win10,vs2013,opencv3.2

注:每个代码都可以在vs中单独运行

该项目所有文件如下:

基于opencv人脸识别

其中只需要使用的文件如下:

基于opencv人脸识别

详细代码:

//这个是生成照片的代码
#include <opencv2/opencv.hpp>
#include <iostream>

using namespace cv;
using namespace std;

//cv库,哈尔检测人脸使用的配置文件
string haar_face_datapath = "E:/opencv/install/etc/haarcascades/haarcascade_frontalface_alt_tree.xml";


int main(int argc, char** argv) {
	//打开摄像头
	VideoCapture capture(0); 
	if (!capture.isOpened()) {
		printf("could not open camera...\n");
		return -1;
	}
	Size S = Size((int)capture.get(CV_CAP_PROP_FRAME_WIDTH), (int)capture.get(CV_CAP_PROP_FRAME_HEIGHT));
	int fps = capture.get(CV_CAP_PROP_FPS);

	//人脸检测库
	CascadeClassifier faceDetector;
	//人脸检测函数
	faceDetector.load(haar_face_datapath);


	Mat frame;
	namedWindow("camera-demo", CV_WINDOW_AUTOSIZE);
	vector<Rect> faces;
	int count = 0;
	while (capture.read(frame)) {
		flip(frame, frame, 1);
		faceDetector.detectMultiScale(frame, faces, 1.1, 1, 0, Size(100, 120), Size(380, 400));
		for (int i = 0; i < faces.size(); i++) {
			if (count % 10 == 0) {
				Mat dst;
				//重新把照片大小改成模板的大小
				resize(frame(faces[i]), dst, Size(112, 92));
				//保存照片
				imwrite(format("D:/else//led/face_%d.jpg", count), dst);
			}
			rectangle(frame, faces[i], Scalar(0, 0, 255), 2, 8, 0);
		}
		imshow("camera-demo", frame);
		char c = waitKey(10);
		//按键退出截图
		if (c == 27) {
			break;
		}
		count++;
	}

	capture.release();

	waitKey(0);
	return 0;
}
//这个是生成csv文件的教程,直接用shell命令,不需要写代码


1. 打开cmd


2. 输入 F: (因为我的文件在F盘)  注意一定要先进入F盘才可以后续操作,不然会显示找不到文件


3. 输入cd 文件路径,点回车


4. 输入dir /b/s/p/w *.jpg>at.csv 注意,我的文件格式为.jpg
#include <opencv2/opencv.hpp>
#include <opencv2/face.hpp>
#include <iostream>

using namespace cv;
using namespace cv::face;
using namespace std;

int main(int argc, char** argv) {
	
	//加载自己的csv文件
	string filename = string("D:/else/wyz/at.csv");
	ifstream file(filename.c_str(), ifstream::in);
	if (!file) {
		printf("could not load file correctly...\n");
		return -1;
	}

	string line, path, classlabel;
	vector<Mat> images;
	vector<int> labels;
	char separator = ';';
	while (getline(file, line)) {
		stringstream liness(line);
		getline(liness, path, separator);
		getline(liness, classlabel);
		if (!path.empty() && !classlabel.empty()) {
			//printf("path : %s\n", path.c_str());
			images.push_back(imread(path, 0));
			labels.push_back(atoi(classlabel.c_str()));
		}
	}

	if (images.size() < 1 || labels.size() < 1) {
		printf("invalid image path...\n");
		return -1;
	}

	int height = images[0].rows;
	int width = images[0].cols;
	printf("height : %d, width : %d\n", height, width);

	Mat testSample = images[images.size() - 1];
	int testLabel = labels[labels.size() - 1];
	images.pop_back();
	labels.pop_back();

	// train it,训练自己的模型,到这里已经完成训练操作
	Ptr<BasicFaceRecognizer> model = createEigenFaceRecognizer();
	model->train(images, labels);
	model->save("D:/else/wyz/led_wyz.xml");


	/* 以下两个方法训练模型同样操作
	Ptr<FaceRecognizer> model1 = createFisherFaceRecognizer();
	model1->train(images, labels);
	model1->save("MyFaceFisherModel.xml");

	Ptr<FaceRecognizer> model2 = createLBPHFaceRecognizer();
	model2->train(images, labels);
	model2->save("MyFaceLBPHModel.xml");
	*/



	/* 以下内容用于检测验证自己重建的人脸模,可以直接跳过,本代码全部注释掉了
	// recognition face
	int predictedLabel = model->predict(testSample);
	printf("actual label : %d, predict label :  %d\n", testLabel, predictedLabel);

	Mat eigenvalues = model->getEigenValues();
	Mat W = model->getEigenVectors();
	Mat mean = model->getMean();
	Mat meanFace = mean.reshape(1, height);
	Mat dst;
	if (meanFace.channels() == 1) {
		normalize(meanFace, dst, 0, 255, NORM_MINMAX, CV_8UC1);
	}
	else if (meanFace.channels() == 3) {
		normalize(meanFace, dst, 0, 255, NORM_MINMAX, CV_8UC3);
	}
	imshow("Mean Face", dst);



	// show eigen faces
	for (int i = 0; i < min(25, W.cols); i++) {
		Mat ev = W.col(i).clone();
		Mat grayscale;
		Mat eigenFace = ev.reshape(1, height);
		if (eigenFace.channels() == 1) {
			normalize(eigenFace, grayscale, 0, 255, NORM_MINMAX, CV_8UC1);
		}
		else if (eigenFace.channels() == 3) {
			normalize(eigenFace, grayscale, 0, 255, NORM_MINMAX, CV_8UC3);
		}
		Mat colorface;
		applyColorMap(grayscale, colorface, COLORMAP_JET);
		char* winTitle = new char[128];
		sprintf(winTitle, "eigenface_%d", i);
		imshow(winTitle, colorface);
	}


	// 重建人脸
	for (int num = min(25, W.cols); num < min(W.cols, 300); num += 1) {
		Mat evs = Mat(W, Range::all(), Range(0, num));
		Mat projection = LDA::subspaceProject(evs, mean, images[0].reshape(1, 1));
		Mat reconstruction = LDA::subspaceReconstruct(evs, mean, projection);

		Mat result = reconstruction.reshape(1, height);
		if (result.channels() == 1) {
			normalize(result, reconstruction, 0, 255, NORM_MINMAX, CV_8UC1);
		}
		else if (result.channels() == 3) {
			normalize(result, reconstruction, 0, 255, NORM_MINMAX, CV_8UC3);
		}
		char* winTitle = new char[128];
		sprintf(winTitle, "recon_face_%d", num);
		imshow(winTitle, reconstruction);
	}
	*/

	waitKey(0);
	return 0;
}

二、原理

原理1.PCA(主成分分析)原理

通过对高维数据分析发现他们的相同与不同表达为 一个低维数据模式

主成分不变 

细微损失 

高维数据到低维数据

原理2.API调用

主要是使用其中的三个函数,来训练自己的数据,函数如下:

// train it
	Ptr<BasicFaceRecognizer> model = createEigenFaceRecognizer();
	model->train(images, labels);
	model->save("D:/else/wyz/led_wyz.xml");
	
	Ptr<FaceRecognizer> model1 = createFisherFaceRecognizer();
	model1->train(images, labels);
	model1->save("MyFaceFisherModel.xml");

	Ptr<FaceRecognizer> model2 = createLBPHFaceRecognizer();
	model2->train(images, labels);
	model2->save("MyFaceLBPHModel.xml");
	

三、步骤

1. 算法实现步骤

  1. 数据:ORL  att_faces   OpenCV的数据 10个人、每人10张照片
  2. 一个图像N宽*N高*N个  112*92*100个矩阵
  3. 平均脸 矩阵计算得到均值
  4. 特征脸 矩阵计算得到特征值
  5. 开始、读训练数据、计算平均脸、计算协方差矩阵、计算特征值、特征矩阵、 PAC降维、子空间模型、检测
  6. 生成CSV文件
  7. 生成自己的xml
  8. 训练
  9. 识别
  10.  识别率
  11.  结果分析

四、结果

结果1.方差均值作用

图像RGB矩阵

空白背景方差不为0,均值为0

基于opencv人脸识别

基于opencv人脸识别

基于opencv人脸识别

结果2.PCA应用

  1. 灰度图像
  2. 描边,画出边缘

    基于opencv人脸识别

  1. XY表示所有轮廓,N*X*Y
  2. PCA处理,得到协方差矩阵,得到特征值特征向量

             N行2列表示所有的点

             得到轮廓中心位置

基于opencv人脸识别

             Eigen得到特征值

基于opencv人脸识别

结果3..Eigenface算法

  1. 数据:ORL  att_faces   OpenCV的数据 10个人、每人10张照片

      基于opencv人脸识别

      平均脸

      基于opencv人脸识别

      2. 一个图像N宽*N高*N个  112*92*100个矩阵

      3.平均脸 矩阵计算得到均值

      4.特征脸 矩阵计算得到特征值

      5.开始、读训练数据、计算平均脸、计算协方差矩阵、计算特征值、特征矩阵、 PAC降维、子空间模型、检测

      6.生成CSV文件

      7.生成自己的xml

       基于opencv人脸识别

     8.训练

     9.识别

       基于opencv人脸识别

    10. 识别率:

         基于opencv人脸识别

         基于opencv人脸识别

     11. 侧脸影响

        基于opencv人脸识别

     12.暗光条件下,找不到人脸,识别率也降低

        基于opencv人脸识别

结果4.Fisher算法

  1. 由fisher发现,于是命名FisherFace
  2. 基于LDA降维,求两个对象之间的内差和外差,得到离散矩阵,求特征值特 征向量
  3. FishFace识别在光照上有所进步,光的明暗影响不是很大

        基于opencv人脸识别

     4.识别率问题,因为这里光亮作为主要因素,光亮无法做到细微控制,这里不做详细比较

       基于opencv人脸识别

     5.人脸上半部分处在黑暗环境,与EigenFace比较,差不多同一张图片,这张图能识别出来

      基于opencv人脸识别

结果5.LBPH算法

此算法和前两种的比较,主要是在光照和侧脸角度上有所加强,这里不再多做比较。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/135733.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 舵机工作原理及程序[通俗易懂]

    舵机工作原理及程序[通俗易懂]舵机可以实时控制角度,广泛应用于航模、云台等等需要控制角度的场合舵机的工作原理:由pwm波进入内部电路产生一个偏置电压,触发电机通过减速齿轮带动电位器移动,使电压差为零时,电机停转,从而达到伺服的效果。舵机PWM的协议都是相同的,但最新出现的舵机可能不一样协议一般为:高电平宽度在0.5ms~2.5ms控制舵机转过不同的角度例如某一型号如下:

    2022年4月28日
    52
  • 视频采用的压缩编码_视频压缩编码存在的冗余信息

    视频采用的压缩编码_视频压缩编码存在的冗余信息1、什么是H.261编码协议        答:H.261是最早出现的视频编码建议,它采用的算法结合了可减少时间冗余的帧间预测和可减少空间冗余的DCT变换的混合编码方法,其输出码率是p×64kbit/s。p取值较小时,只能传清晰度不太高的图像,适合于面对面的电视电话;p取值较大时(如p>6),可以传输清晰度较好的会议电视图像。该标准主要针对ISDN电话线的视频会议,可视电话等,ISDN的

    2025年6月23日
    2
  • java编程_郑州java编程入门培训「建议收藏」

    java编程_郑州java编程入门培训「建议收藏」郑州java培训机构如何选择? 在选择java培训机构之前,必须进行大量的比较,然后才能决定去哪家培训机构。而现在千锋教育的Java实验班可以帮测试你是否适合学习Java。你可以找个机会去看看。要想学好java,就必须选择好的java培训机构,千锋的教育很好。口碑很重要,好的口碑是学生的真实的评价,这样的学校很靠谱。好的it培训学校有很好的老师指导学生学习,好的老师是学生学习路上的灯塔。选择…

    2022年7月8日
    18
  • vue-jsonp_js创建json数组对象

    vue-jsonp_js创建json数组对象前后端分离开发中,后端返回的接口中的数据是json字符串格式,而前端需要json字符串格式,如何进行json字符串和json对象之间的相互转换

    2022年10月6日
    2
  • Linux下的文件IO编程[通俗易懂]

    Linux下的文件IO编程[通俗易懂]Linux中处处皆文件,可以通过终端命令来对文件进行操作,也可以通过编程语言(程序)来对文件进行操作。而在C语言中可以通过标准IO和文件IO对文件进行操作,上一篇文章描述了标准IO,这篇文章当然是关于文件IO的基本操作,同时给予了详细的例程和标准IO进行对比。

    2022年4月30日
    53
  • phpstrom激活码2021_通用破解码

    phpstrom激活码2021_通用破解码,https://javaforall.net/100143.html。详细ieda激活码不妨到全栈程序员必看教程网一起来了解一下吧!

    2022年3月17日
    83

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号