(精华)转:RDD:创建的几种方式(scala和java)

(精华)转:RDD:创建的几种方式(scala和java)转:https://blog.csdn.net/weixin_38750084/article/details/82769600下面开始初始化sparkspark程序需要做的第一件事情,就是创建一个SparkContext对象,它将告诉spark如何访问一个集群,而要创建一个SparkContext对象,你首先要创建一个SparkConf对象,该对象访问了你的应用程序的信息比如下面的代码是运行在spark模式下 publicclasssparkTestCon{ …

大家好,又见面了,我是你们的朋友全栈君。

转: https://blog.csdn.net/weixin_38750084/article/details/82769600 

这篇文章非常棒, 用代码实际演示了如何创建RDD; 本文主要转载了 java创建RDD的两种方式, 

 

【方式1】

下面开始初始化spark
spark程序需要做的第一件事情,就是创建一个SparkContext对象,它将告诉spark如何访问一个集群,而要创建一个SparkContext对象,你首先要创建一个SparkConf对象,该对象访问了你的应用程序的信息
比如下面的代码是运行在spark模式下

public class sparkTestCon {
 
    public static void main(String[] args) {
        SparkConf conf=new SparkConf();
        conf.set("spark.testing.memory", "2147480000");     //因为jvm无法获得足够的资源
        JavaSparkContext sc = new JavaSparkContext("spark://192.168.52.140:7077", "First Spark App",conf);
        System.out.println(sc);
    }
 
}

下面是运行在本机,把上面的第6行代码改为如下

JavaSparkContext sc = new JavaSparkContext("local", "First Spark App",conf);

RDD的创建有两种方式 
1.引用外部文件系统的数据集(HDFS) 
2.并行化一个已经存在于驱动程序中的集合(并行集合,是通过对于驱动程序中的集合调用JavaSparkContext.parallelize来构建的RDD)

第一种方式创建 
下面通过代码来理解RDD和怎么操作RDD

package com.tg.spark;
 
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.storage.StorageLevel;
/**
 * 引用外部文件系统的数据集(HDFS)创建RDD
 *  匿名内部类定义函数传给spark
 * @author 汤高
 *
 */
public class RDDOps {
    //完成对所有行的长度求和
    public static void main(String[] args) {
 
        SparkConf conf=new SparkConf();
        conf.set("spark.testing.memory", "2147480000");     //因为jvm无法获得足够的资源
        JavaSparkContext sc = new JavaSparkContext("local", "First Spark App",conf);
        System.out.println(sc);
 
        //通过hdfs上的文件定义一个RDD 这个数据暂时还没有加载到内存,也没有在上面执行动作,lines仅仅指向这个文件
        JavaRDD<String> lines = sc.textFile("hdfs://master:9000/testFile/README.md");
 
        //定义lineLengths作为Map转换的结果 由于惰性,不会立即计算lineLengths
        //第一个参数为传入的内容,第二个参数为函数操作完后返回的结果类型
        JavaRDD<Integer> lineLengths = lines.map(new Function<String, Integer>() {
          public Integer call(String s) { 
              System.out.println("每行长度"+s.length());
              return s.length(); }
        });
        //运行reduce  这是一个动作action  这时候,spark才将计算拆分成不同的task,
        //并运行在独立的机器上,每台机器运行他自己的map部分和本地的reducation,并返回结果集给去驱动程序
        int totalLength = lineLengths.reduce(new Function2<Integer, Integer, Integer>() {
          public Integer call(Integer a, Integer b) { return a + b; }
        });
 
        System.out.println(totalLength);
        //为了以后复用  持久化到内存...
        lineLengths.persist(StorageLevel.MEMORY_ONLY());
 
 
    }
}
 

如果觉得刚刚那种写法难以理解,可以看看第二种写法

package com.tg.spark;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.storage.StorageLevel;
/**
 * 引用外部文件系统的数据集(HDFS)创建RDD 
 *  外部类定义函数传给spark
 * @author 汤高
 *
 */
public class RDDOps2 {
    // 完成对所有行的长度求和
    public static void main(String[] args) {
 
        SparkConf conf = new SparkConf();
        conf.set("spark.testing.memory", "2147480000"); // 因为jvm无法获得足够的资源
        JavaSparkContext sc = new JavaSparkContext("local", "First Spark App", conf);
        System.out.println(sc);
 
 
        //通过hdfs上的文件定义一个RDD 这个数据暂时还没有加载到内存,也没有在上面执行动作,lines仅仅指向这个文件
        JavaRDD<String> lines = sc.textFile("hdfs://master:9000/testFile/README.md");
        //定义lineLengths作为Map转换的结果 由于惰性,不会立即计算lineLengths
        JavaRDD<Integer> lineLengths = lines.map(new GetLength());
 
 
        //运行reduce  这是一个动作action  这时候,spark才将计算拆分成不同的task,
                //并运行在独立的机器上,每台机器运行他自己的map部分和本地的reducation,并返回结果集给去驱动程序
        int totalLength = lineLengths.reduce(new Sum());
 
        System.out.println("总长度"+totalLength);
        // 为了以后复用 持久化到内存...
        lineLengths.persist(StorageLevel.MEMORY_ONLY());
 
    }
    //定义map函数
    //第一个参数为传入的内容,第二个参数为函数操作完后返回的结果类型
    static class GetLength implements Function<String, Integer> {
        public Integer call(String s) {
            return s.length();
        }
    }
    //定义reduce函数 
    //第一个参数为内容,第三个参数为函数操作完后返回的结果类型
    static class Sum implements Function2<Integer, Integer, Integer> {
        public Integer call(Integer a, Integer b) {
            return a + b;
        }
    }
}

【方式2】 (java编程推荐)

并行化一个已经存在于驱动程序中的集合(并行集合,是通过对于驱动程序中的集合调用JavaSparkContext.parallelize来构建的RDD)

package com.tg.spark;
 
import java.util.Arrays;
import java.util.List;
 
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.storage.StorageLevel;
 
import com.tg.spark.RDDOps2.GetLength;
import com.tg.spark.RDDOps2.Sum;
/**
 * 并行化一个已经存在于驱动程序中的集合创建RDD
 * @author 汤高
 *
 */
public class RDDOps3 {
    // 完成对所有数求和
    public static void main(String[] args) {
 
        SparkConf conf = new SparkConf();
        conf.set("spark.testing.memory", "2147480000"); // 因为jvm无法获得足够的资源
        JavaSparkContext sc = new JavaSparkContext("local", "First Spark App", conf);
        System.out.println(sc);
 
        List<Integer> data = Arrays.asList(1, 2, 3, 4, 5);
        //并行集合,是通过对于驱动程序中的集合调用JavaSparkContext.parallelize来构建的RDD
        JavaRDD<Integer> distData = sc.parallelize(data);
 
        JavaRDD<Integer> lineLengths = distData.map(new GetLength());
 
        // 运行reduce 这是一个动作action 这时候,spark才将计算拆分成不同的task,
        // 并运行在独立的机器上,每台机器运行他自己的map部分和本地的reducation,并返回结果集给去驱动程序
        int totalLength = lineLengths.reduce(new Sum());
 
        System.out.println("总和" + totalLength);
        // 为了以后复用 持久化到内存...
        lineLengths.persist(StorageLevel.MEMORY_ONLY());
 
    }
 
    // 定义map函数
    static class GetLength implements Function<Integer, Integer> {
 
        @Override
        public Integer call(Integer a) throws Exception {
 
            return a;
        }
    }
 
    // 定义reduce函数
    static class Sum implements Function2<Integer, Integer, Integer> {
        public Integer call(Integer a, Integer b) {
            return a + b;
        }
    }
}

注意:上面的写法是基于jdk1.7或者更低版本 
基于jdk1.8有更简单的写法 
下面是官方文档的说明

所以如果要完成上面第一种创建方式,在jdk1.8中可以简单的这么写

JavaRDD<String> lines = sc.textFile("hdfs://master:9000/testFile/README.md");
JavaRDD<Integer> lineLengths = lines.map(s -> s.length());
int totalLength = lineLengths.reduce((a, b) -> a + b);


List<Integer> data = Arrays.asList(1, 2, 3, 4, 5);
JavaRDD<Integer> distData = sc.parallelize(data);

主要不同就是在jdk1.7中我们要自己写一个函数传到map或者reduce方法中,而在jdk1.8中可以直接在map或者reduce方法中写lambda表达式

参考原文:https://blog.csdn.net/tanggao1314/article/details/51570452/

 

扩展:

SparkContext的parallelize的参数

通过调用SparkContext的parallelize方法,在一个已经存在的Scala集合上创建的(一个Seq对象)。集合的对象将会被拷贝,创建出一个可以被并行操作的分布式数据集。

var data = [1, 2, 3, 4, 5]  
var distData = sc.parallelize(data)  

在一个Spark程序的开始部分,有好多是用sparkContext的parallelize制作RDD的,是ParallelCollectionRDD,创建一个并行集合。

例如sc.parallelize(0 until numMappers, numMappers)

创建并行集合的一个重要参数,是slices的数目(例子中是numMappers),它指定了将数据集切分为几份。

在集群模式中,Spark将会在一份slice上起一个Task。典型的,你可以在集群中的每个cpu上,起2-4个Slice (也就是每个cpu分配2-4个Task)。

一般来说,Spark会尝试根据集群的状况,来自动设定slices的数目。当让,也可以手动的设置它,通过parallelize方法的第二个参数。(例如:sc.parallelize(data, 10)).

参考:https://blog.csdn.net/caoli98033/article/details/41777065

 

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/136308.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 不通过浏览器获取公网 IP

    不通过浏览器获取公网 IP

    2022年2月19日
    67
  • Linux 的解压缩文件命令「建议收藏」

    Linux 的解压缩文件命令「建议收藏」博客园首页新随笔联系管理随笔-122 文章-0 评论-14 压缩文件 tar -zcvf my.tarabcabc.txtar命令可以用来压缩打包单文件、多个文件、单个目录、多个目录。常用格式:单个文件压缩打包tarczvfmy.tarfile1多个文件压缩打包tarczvfmy.tarfile1file2,…单个目录压缩打包tarczvfmy.tar…

    2022年5月16日
    48
  • [图像]Canny检测的Matlab实现(含代码)「建议收藏」

    [图像]Canny检测的Matlab实现(含代码)「建议收藏」图象的边缘是指图象局部区域亮度变化显著的部分,该区域的灰度剖面一般可以看作是一个阶跃,既从一个灰度值在很小的缓冲区域内急剧变化到另一个灰度相差较大的灰度值。Canny边缘检测基本特征如下:(1)必须满足两个条件:①能有效地抑制噪声;②必须尽量精确确定边缘的位置。(2)根据对信噪比与定位乘积进行测度,得到最优化逼近算子。这就是Canny

    2022年5月30日
    127
  • maven项目的groupid是什么(概念关系构建图)

    前言博主在学习SpringMaven构建的时候,经常会引入以下结构代码:<dependencies><dependency><groupId>org.springframework</groupId><artifactId>spring-context-indexer</artifactId><version>5.2.6.RELEASE</versi

    2022年4月15日
    236
  • navicat for mysql 15 激活码【2021.10最新】

    (navicat for mysql 15 激活码)JetBrains旗下有多款编译器工具(如:IntelliJ、WebStorm、PyCharm等)在各编程领域几乎都占据了垄断地位。建立在开源IntelliJ平台之上,过去15年以来,JetBrains一直在不断发展和完善这个平台。这个平台可以针对您的开发工作流进行微调并且能够提供…

    2022年3月30日
    350
  • IIS7.5配置防盗链

    IIS7.5配置防盗链首先,要下载、安装一个IIS重写模块。是到微软站点下载的,可以放心了。(靠,之前以为IIS7是内置了的,想不到还是要另外安装东西)64位:http://www.microsoft.com/downloads/zh-cn/details.aspx?familyid=1b8c7bd8-8824-4408-b8fc-49dc7f951a0032位:http://www.microsoft.com/…

    2022年7月23日
    10

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号