Tensorflow实现各种学习率衰减

Tensorflow实现各种学习率衰减Tensorflow实现学习率衰减觉得有用的话,欢迎一起讨论相互学习~FollowMe参考文献DeeplearningAIAndrewNgTensorflow1.2API学习率衰减(learningratedecay)加快学习算法的一个办法就是随时间慢慢减少学习率,我们将之称为学习率衰减(learningratedecay)…

大家好,又见面了,我是你们的朋友全栈君。

Tensorflow实现各种学习率衰减

觉得有用的话,欢迎一起讨论相互学习~

Tensorflow实现各种学习率衰减我的微博我的github我的B站

参考文献
Deeplearning AI Andrew Ng
Tensorflow1.2 API

学习率衰减(learning rate decay)

  • 加快学习算法的一个办法就是随时间慢慢减少学习率,我们将之称为学习率衰减(learning rate decay)

概括

  • 假设你要使用mini-batch梯度下降法,mini-batch数量不大,大概64或者128个样本,但是在迭代过程中会有噪音,下降朝向这里的最小值,但是不会精确的收敛,所以你的算法最后在附近摆动.,并不会真正的收敛.因为你使用的是固定的 α \alpha α,在不同的mini-batch中有杂音,致使其不能精确的收敛.

Tensorflow实现各种学习率衰减

  • 但如果能慢慢减少学习率 α \alpha α 的话,在初期的时候,你的学习率还比较大,能够学习的很快,但是随着 α \alpha α 变小,你的步伐也会变慢变小.所以最后的曲线在最小值附近的一小块区域里摆动.所以慢慢减少 α \alpha α 的本质在于在学习初期,你能承受较大的步伐, 但当开始收敛的时候,小一些的学习率能让你的步伐小一些.

Tensorflow实现各种学习率衰减

细节

  • 一个epoch表示要遍历一次数据,即就算有多个mini-batch,但是一定要遍历所有数据一次,才叫做一个epoch.
  • 学习率 α , 其 中 α 0 表 示 初 始 学 习 率 , d e c a y − r a t e 是 一 个 新 引 入 的 超 参 数 \alpha ,其中 \alpha_{0}表示初始学习率, decay-rate是一个新引入的超参数 α,α0,decayrate :
    α = 1 1 + d e c a y − r a t e ∗ e p o c h − n u m ∗ α 0 \alpha = \frac{1}{1+decay-rate*epoch-num}*\alpha_{0} α=1+decayrateepochnum1α0

Tensorflow实现各种学习率衰减

其他学习率是衰减公式

指数衰减

α = d e c a y − r a t e e p o c h − n u m ∗ α 0 \alpha = decay-rate^{epoch-num}*\alpha_{0} α=decayrateepochnumα0
α = k e p o c h − n u m ∗ α 0 其 中 k 是 超 参 数 \alpha = \frac{k}{\sqrt{epoch-num}}*\alpha_{0}其中k是超参数 α=epochnum
k
α0k

α = k t ∗ α 0 其 中 k 是 超 参 数 , t 表 示 m i n i − b a t c h 的 标 记 数 字 \alpha = \frac{k}{\sqrt{t}}*\alpha_{0}其中k是超参数,t表示mini-batch的标记数字 α=t
k
α0k,tminibatch

Tensorflow实现学习率衰减

自适应学习率衰减

tf.train.exponential_decay(learning_rate, global_step, decay_steps, decay_rate, staircase=False, name=None)
退化学习率,衰减学习率,将指数衰减应用于学习速率。
计算公式:
decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)

# 初始的学习速率是0.1,总的迭代次数是1000次,如果staircase=True,那就表明每decay_steps次计算学习速率变化,更新原始学习速率,
# 如果是False,那就是每一步都更新学习速率。红色表示False,蓝色表示True。
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

learning_rate = 0.1  # 初始学习速率时0.1
decay_rate = 0.96  # 衰减率
global_steps = 1000  # 总的迭代次数
decay_steps = 100  # 衰减次数

global_ = tf.Variable(tf.constant(0))
c = tf.train.exponential_decay(learning_rate, global_, decay_steps, decay_rate, staircase=True)
d = tf.train.exponential_decay(learning_rate, global_, decay_steps, decay_rate, staircase=False)

T_C = []
F_D = []

with tf.Session() as sess:
   for i in range(global_steps):
       T_c = sess.run(c, feed_dict={ 
   global_: i})
       T_C.append(T_c)
       F_d = sess.run(d, feed_dict={ 
   global_: i})
       F_D.append(F_d)

plt.figure(1)
plt.plot(range(global_steps), F_D, 'r-')# "-"表示折线图,r表示红色,b表示蓝色
plt.plot(range(global_steps), T_C, 'b-')
# 关于函数的值的计算0.96^(3/1000)=0.998
plt.show()

Tensorflow实现各种学习率衰减

反时限学习率衰减

inverse_time_decay(learning_rate, global_step, decay_steps, decay_rate,staircase=False,name=None)
将反时限衰减应用到初始学习率。
计算公式:
decayed_learning_rate = learning_rate / (1 + decay_rate * t)

import tensorflow as tf
import matplotlib.pyplot as plt

global_ = tf.Variable(tf.constant(0), trainable=False)
globalstep = 10000  # 全局下降步数
learning_rate = 0.1  # 初始学习率
decaystep = 1000  # 实现衰减的频率
decay_rate = 0.5  # 衰减率

t = tf.train.inverse_time_decay(learning_rate, global_, decaystep, decay_rate, staircase=True)
f = tf.train.inverse_time_decay(learning_rate, global_, decaystep, decay_rate, staircase=False)

T = []
F = []

with tf.Session() as sess:
    for i in range(globalstep):
        t_ = sess.run(t, feed_dict={ 
   global_: i})
        T.append(t_)
        f_ = sess.run(f, feed_dict={ 
   global_: i})
        F.append(f_)

plt.figure(1)
plt.plot(range(globalstep), T, 'r-')
plt.plot(range(globalstep), F, 'b-')
plt.show()

Tensorflow实现各种学习率衰减

学习率自然指数衰减

def natural_exp_decay(learning_rate, global_step, decay_steps, decay_rate, staircase=False, name=None)
将自然指数衰减应用于初始学习速率。
计算公式:
decayed_learning_rate = learning_rate * exp(-decay_rate * global_step)

import tensorflow as tf
import matplotlib.pyplot as plt

global_ = tf.Variable(tf.constant(0), trainable=False)
globalstep = 10000  # 全局下降步数
learning_rate = 0.1  # 初始学习率
decaystep = 1000  # 实现衰减的频率
decay_rate = 0.5  # 衰减率

t = tf.train.natural_exp_decay(learning_rate, global_, decaystep, decay_rate, staircase=True)
f = tf.train.natural_exp_decay(learning_rate, global_, decaystep, decay_rate, staircase=False)

T = []
F = []

with tf.Session() as sess:
    for i in range(globalstep):
        t_ = sess.run(t, feed_dict={ 
   global_: i})
        T.append(t_)
        f_ = sess.run(f, feed_dict={ 
   global_: i})
        F.append(f_)

plt.figure(1)
plt.plot(range(globalstep), T, 'r-')
plt.plot(range(globalstep), F, 'b-')
plt.show()

Tensorflow实现各种学习率衰减

常数分片学习率衰减

piecewise_constant(x, boundaries, values, name=None)
例如前1W轮迭代使用1.0作为学习率,1W轮到1.1W轮使用0.5作为学习率,以后使用0.1作为学习率。

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

# 当global_取不同的值时learning_rate的变化,所以我们把global_
global_ = tf.Variable(tf.constant(0), trainable=False)
boundaries = [10000, 12000]
values = [1.0, 0.5, 0.1]
learning_rate = tf.train.piecewise_constant(global_, boundaries, values)
global_steps = 20000

T_L = []
with tf.Session() as sess:
    for i in range(global_steps):
        T_l = sess.run(learning_rate, feed_dict={ 
   global_: i})
        T_L.append(T_l)

plt.figure(1)
plt.plot(range(global_steps), T_L, 'r-')
plt.show()

Tensorflow实现各种学习率衰减

多项式学习率衰减

特点是确定结束的学习率。
polynomial_decay(learning_rate, global_step, decay_steps,end_learning_rate=0.0001, power=1.0,cycle=False, name=None):
通常观察到,通过仔细选择的变化程度的单调递减的学习率会产生更好的表现模型。此函数将多项式衰减应用于学习率的初始值。
使学习率learning_rate在给定的decay_steps中达到end_learning_rate。它需要一个global_step值来计算衰减的学习速率。你可以传递一个TensorFlow变量,在每个训练步骤中增加global_step = min(global_step, decay_steps)
计算公式:
decayed_learning_rate = (learning_rate – end_learning_rate) *(1 – global_step / decay_steps) ^ (power) + end_learning_rate
如果cycle为True,则使用decay_steps的倍数,第一个大于’global_steps`.ceil表示向上取整.
decay_steps = decay_steps * ceil(global_step / decay_steps)
decayed_learning_rate = (learning_rate – end_learning_rate) *(1 – global_step / decay_steps) ^ (power) + end_learning_rate

Example: decay from 0.1 to 0.01 in 10000 steps using sqrt (i.e. power=0.5):'''
import tensorflow as tf
import matplotlib.pyplot as plt

global_ = tf.Variable(tf.constant(0), trainable=False)
starter_learning_rate = 0.1  # 初始学习率
end_learning_rate = 0.01  # 结束学习率
decay_steps = 1000
globalstep = 10000
f = tf.train.polynomial_decay(starter_learning_rate, global_, decay_steps, end_learning_rate, power=0.5, cycle=False)
t = tf.train.polynomial_decay(starter_learning_rate, global_, decay_steps, end_learning_rate, power=0.5, cycle=True)
F = []
T = []
with tf.Session() as sess:
    for i in range(globalstep):
        f_ = sess.run(f, feed_dict={ 
   global_: i})
        F.append(f_)
        t_ = sess.run(t, feed_dict={ 
   global_: i})
        T.append(t_)

plt.figure(1)
plt.plot(range(globalstep), F, 'r-')
plt.plot(range(globalstep), T, 'b-')
plt.show()

Tensorflow实现各种学习率衰减

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/136712.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Adminlte教程[通俗易懂]

    Adminlte教程[通俗易懂]1

    2022年7月27日
    5
  • idea导出可执行jar包真麻烦_java导出可执行程序

    idea导出可执行jar包真麻烦_java导出可执行程序1.IDEA导出可执行的Jar换了Idea后今天需要把项目打成jar放到服务器上运行,稍微整理一下。在IDEA的菜单中选择File–>ProjectStructure,如下图所示:选择“Artifacts“在出现的图中点击加号在如下的图形中需要注意两个地方:1)需要选择jar包默认运行的入口类2)需要设置MANIFEST.MF的位置,在选择好入口类后系统会将MANIFEST.MF默认

    2022年10月5日
    1
  • Java程序员,你一定需要了解的六款大数据采集平台

    Java程序员,你一定需要了解的六款大数据采集平台随着大数据越来越被重视,数据采集的挑战变的尤为突出。今天为大家介绍几款数据采集平台: ApacheFlume Fluentd Logstash Chukwa Scribe SplunkForwarder 大数据平台与数据采集任何完整的大数据平台,一般包括以下的几个过程: 数据采集 数据存储 数据处理 …

    2022年6月6日
    123
  • Android之CardView[通俗易懂]

    Android之CardView[通俗易懂]文章目录一、常用属性二、属性效果展示三、案例展示具体代码:1、一个最简单的示例:2、复杂化四、案例1、布局搭建2、实体类创建3、功能实现4、适配CardView继承FrameLayout一、常用属性1、cardBackgroundColor设置背景色CardView是View的子类,View一般使用Background设置背景色,为什么还要单独提取出一个属性让我们来设置背景色呢?为了…

    2022年10月11日
    0
  • RapidXML的读写

    RapidXML的读写把如下图几个文件放到工程目录(hpp文件)新建工程进行读写测试,代码如下://ConsoleApplication1.cpp:定义控制台应用程序的入口点。//#include”stdafx.h”#include”rapidxml.hpp”#include”rapidxml_utils.hpp”//rapidxml::file#include”rapidx…

    2022年7月17日
    9
  • Vue生命周期钩子(三)「建议收藏」

    Vue生命周期钩子(三)「建议收藏」Vue生命周期图Vue中共有11个生命周期函数,本文只说明8个生命周期钩子beforeCreate:实例刚在内存中被创建出来,此时,还没有初始化好data和methods属性created:实例已经在内存中创建完毕,此时 data 和 methods 已经创建完毕,此时还没有开始编译模板beforeMount:此时已经完成了模板的编译,但是还没有挂载到页面中…

    2022年6月13日
    27

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号