大数据的使用方法,主要有哪些?「建议收藏」

大数据的使用方法,主要有哪些?「建议收藏」我们正处于福雷斯特研究公司所描述的“用户时代”,这个时代中驱动业务决策的不再是公司,而是用户。基于这个原因,深度理解用户的重要性已经远胜以往,因此许多机构开始使用大数据技术来挖掘用户信息。在这个时代,企图收获成功(甚至是求生存)的在线业务必须切实的理解顾客的体验和行为,因此海量数据的收集及挖掘能力成了这些机构的必备手段。当下,有许多机构的分析仍处于数据的收集上,组织能力的缺乏和技术的限制让这些收…

大家好,又见面了,我是你们的朋友全栈君。

我们正处于福雷斯特研究公司所描述的“用户时代”,这个时代中驱动业务决策的不再是公司,而是用户。基于这个原因,深度理解用户的重要性已经远胜以往,因此许多机构开始使用大数据技术来挖掘用户信息。

在这个时代,企图收获成功(甚至是求生存)的在线业务必须切实的理解顾客的体验和行为,因此海量数据的收集及挖掘能力成了这些机构的必备手段。当下,有许多机构的分析仍处于数据的收集上,组织能力的缺乏和技术的限制让这些收集来的数据失去了应有的价值。而在用户体验上也缺乏按部就班的计划,从而丧失了获取关键见解的途径。因此,这样的数据分析有很大的误导、不完整及不确定性。

收集和分析正确的数据、切实的理解用户体验及用户行为已成为当务之急,下面将分享10个大数据的使用方法,可以帮助机构从用户交互中获得见解、提高用户忠诚度并从根本上取得竞争优势:

1.将网络传输中的数据看做“金矿”并进行挖掘。你的网络中包含了大量其它公司无法从中获益的数据,收割这些数据中的价值是你真正理解用户体验的第一步。

2.不要总是用假设去了解你的用户,并且知道他们需要什么。拥抱用户,并且切实的了解用户行为,要比去假设要好的多。保持客观,从实际数据中获得见解。

3.尽可能的收集数据,从而减少盲点。盲点可能导致丢失关键信息,从而得到一个歪曲的用户体验观。确认你收集了一切可以影响到用户体验和行为分析的数据。

4.对比数据的体积,我们该更看重数量。收集好数据之后,专注于重要的数据来做分析方案。

5.迅速。用户需求优先级总是在变化的,技术需要迅速的做出分析并做调整。这样才能保证你分析出的不是过时结果,对于随时都在改变的需求,你需要迅速的收集数据并做出响应的处理。

6.实时的业务运作。这就需求对数据的实时分析并获取见解,从而在情况发生后可以实时的做出调整,从而保证最佳的用户体验及经营结果。

7.分析不应该给产品系统带来风险,也就是分析永远都不应该给用户体验带来负面的影响。所以尽可能多的捕捉数据,避免盲点才能让分析出的见解不会对业务有负效应。

8.利用好你数据的每一个字节,聚合数据可能会暗藏关键见解。这些信息片段可能会反应最有价值的见解,可以帮助持续的提升用户体验及经营效果。

9.着眼大局。捕捉与你站点或者网络应用程序交互的所有数据,不管是来自智能手机、平板或者是电脑。丰富数据,将不同储存形式之间的数据关联起来,确信这些点都被连接了起来。在处理中关联的越早,获得的见解就越完整、精准、及时和有效。

10.和平台无关,确保你的大数据分析能力不会受到设备的类型限制(笔记本、台式机、智能手机、平板等)。

人工智能、大数据、云计算和物联网的未来发展值得重视,均为前沿产业,多智时代专注于人工智能和大数据的入门和科谱,在此为你推荐几篇优质好文:
1.大数据分析,主要有哪些核心技术?
http://www.duozhishidai.com/article-1938-1.html
2.构建一个企业的大数据分析平台 ,主要分为哪几步?
http://www.duozhishidai.com/article-8017-1.html
3.数据科学,数据分析和机器学习之间,有什么本质区别?
http://www.duozhishidai.com/article-7892-1.html


多智时代-人工智能大数据学习入门网站|人工智能、大数据、物联网云计算的学习交流网站

多智时代-人工智能大数据学习入门网站|人工智能、大数据、云计算、物联网的学习服务的好平台
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/137627.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Mybatis–RowBounds

    Mybatis–RowBoundsRowBounds在mybatis中,使用RowBounds进行分页,非常方便,不需要在sql语句中写limit,即可完成分页功能。但是由于它是在sql查询出所有结果的基础上截取数据的,所以在数据量大的sql中并不适用,它更适合在返回数据结果较少的查询中使用最核心的是在mapper接口层,传参时传入RowBounds(intoffset,intlimit)对象,即可完成分页。不需要修改xml配置添加limitmapper接口层代码如下List<Book>

    2022年9月16日
    4
  • next和nextLine的区别

    next和nextLine的区别内容纯属总结,和CSDN上的很多搜索情况内容大致相同,都是正确可靠的。第一种情况:nextline()在前面,next()在后面privatestaticvoidt1(){Strings1,s2;Scannerscanner=newScanner(System.in);System.out.println("请输…

    2022年5月27日
    38
  • 芯片架构–四大处理器架构「建议收藏」

    芯片架构–四大处理器架构「建议收藏」处理器分为复杂指令集计算机(CISC)和精简指令集计算机(RISC)。1、x86架构我们使用的电脑以及公司的服务器,大部分采用了x86架构的处理器,以intel和AMD的处理器为主。x86架构的处理器采用了CISC指令集(复杂指令集计算机),x86架构的CPU分为x86和x86-64两类,目前主流的是x86-64,即64位的处理器。2、ARM架构我们的手机几乎全部使用了ARM架构,采用了RISC指令集(精简指令集),ARM的优势在于低功耗,因此非常适合手机等终端使用,x86架构的处理器无

    2025年9月28日
    2
  • sklearn安装教程_cmd安装软件命令

    sklearn安装教程_cmd安装软件命令sklearn库sklearn是scikit-learn的简称,是一个基于Python的第三方模块。sklearn库集成了一些常用的机器学习方法,在进行机器学习任务时,并不需要实现算法,只需要简单的调用sklearn库中提供的模块就能完成大多数的机器学习任务。sklearn库是在Numpy、Scipy和matplotlib的基础上开发而成的,因此在介绍sklearn的安装前,需要先安装这些依赖库。…

    2022年10月17日
    1
  • Lucene分词实现—Analyzer、TokenStream(Token、Tokenizer、Tokenfilter)

    Lucene分词实现—Analyzer、TokenStream(Token、Tokenizer、Tokenfilter)一 分清概念:  1  TokenStream是用来走访Token的iterator(迭代器),       Tokenizer继承自TokenStream,其输入为Reader。       TokenFilter继承自TokenStream,其作用是用来完成对TokenStream的过滤操作,譬如 去StopWords,将Token变为小

    2022年7月22日
    8
  • Web API配置自定义路由

    Web API配置自定义路由

    2021年9月6日
    73

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号