讲解最到位的粒子群算法,附matlab代码求解函数最优值

讲解最到位的粒子群算法,附matlab代码求解函数最优值从鸟群觅食行为到粒子群算法粒子群算法的核心例:求解函数最小值粒子群算法的驱动因素从鸟群觅食行为到粒子群算法鸟群寻找食物的过程中,鸟与鸟之间存在着信息的交换,每只鸟搜索目前离食物最近的鸟的周围区域是找到食物的最简单有效的办法。粒子群算法(以下简称PSO)就是模拟鸟群觅食行为的一种彷生算法。解=粒子=鸟(鸟的位置象征着离食物的距离,粒子的位置也象征着…

大家好,又见面了,我是你们的朋友全栈君。

从鸟群觅食行为到粒子群算法

这里写图片描述

鸟群寻找食物的过程中,鸟与鸟之间存在着信息的交换,每只鸟搜索目前离食物最近的鸟的周围区域是找到食物的最简单有效的办法。

粒子群算法(以下简称PSO)就是模拟鸟群觅食行为的一种彷生算法 。 解=粒子=鸟 (鸟的位置象征着离食物的距离,粒子的位置也象征着离最优解的距离,是评价解质量的唯一标准), 找食物=找最优解,一个西瓜=一个粒子找到的历史最优解,一块肉=整个粒子群找到历史最优解 ,

就像鸟的飞行路线会受到自己曾经寻找到的最优食物和鸟群曾经找到过的最优食物的双重影响一样,算法中,每一次迭代,粒子通过两个”极值”(全局历史最优解gBest和个体历史最优解pBest)来更新自己的速度,该速度又是更新粒子位置的关键,而粒子的位置象征着离最优解的距离,也是评价该粒子(解)的唯一标准 。

粒子群算法的核心

该算法的核心是如何根据pBest与gBest来更新粒子的速度和位置,标准粒子群给出了如下的更新公式:

$ V_{t+1} =w \cdot V_t +c_1r_1\cdot(pBest-X_t) +c_2r_2\cdot(gBest-X_t) $

X t + 1 = X t + V t + 1 X_{t+1} = X_t+V_{t+1} Xt+1=Xt+Vt+1

$其中 , t:代数 , X是位置,V是速度,w是惯性权重,c是学习因子,r是随机数 $

这里写图片描述

如上图所示,假设这是一个在2维平面内寻找最优解的待求解问题,某一时间的某一粒子 X t X_t Xt处在原点位置 。则该粒子更新后的速度如上图所示 。 更新公式可以分为三个部门:

  • Part.1 : “惯性”或”动量”部分,反映粒子有维持自己先前速度的趋势
  • Part.2 : “认知”部门 , 反映粒子有向自身历史最优位置逼近的趋势
  • Part.3 : “社会”部门 , 反映粒子有向去群体历史最优位置逼近的趋势

例 : 求解函数最小值

​ 求$f(x)=\sum_{i=1}{n}x_i2,(-20 \leq x\leq 20,n=10) $ 的最小值 ?

% author zhaoyuqiang
clear all ;
close all ;
clc ;
N = 100 ; % 种群规模
D = 10 ; % 粒子维度
T = 100 ; % 迭代次数
Xmax = 20 ;
Xmin = -20 ;
C1 = 1.5 ; % 学习因子1
C2 = 1.5 ; % 学习因子2
W = 0.8 ; % 惯性权重
Vmax = 10 ; % 最大飞行速度
Vmin = -10 ; % 最小飞行速度
popx = rand(N,D)*(Xmax-Xmin)+Xmin ; % 初始化粒子群的位置(粒子位置是一个D维向量)
popv = rand(N,D)*(Vmax-Vmin)+Vmin ; % 初始化粒子群的速度(粒子速度是一个D维度向量) 
% 初始化每个历史最优粒子
pBest = popx ; 
pBestValue = func_fitness(pBest) ; 
%初始化全局历史最优粒子
[gBestValue,index] = max(func_fitness(popx)) ;
gBest = popx(index,:) ;
for t=1:T
    for i=1:N
        % 更新个体的位置和速度
        popv(i,:) = W*popv(i,:)+C1*rand*(pBest(i,:)-popx(i,:))+C2*rand*(gBest-popx(i,:)) ;
        popx(i,:) = popx(i,:)+popv(i,:) ;
        % 边界处理,超过定义域范围就取该范围极值
        index = find(popv(i,:)>Vmax | popv(i,:)<Vmin);
        popv(i,index) = rand*(Vmax-Vmin)+Vmin ; %#ok<*FNDSB>
        index = find(popx(i,:)>Xmax | popx(i,:)<Xmin);
        popx(i,index) = rand*(Xmax-Xmin)+Xmin ;
        % 更新粒子历史最优
        if func_fitness(popx(i,:))>pBestValue(i)    
           pBest(i,:) = popx(i,:) ;
           pBestValue(i) = func_fitness(popx(i,:));
        end
       if pBestValue(i) > gBestValue
            gBest = pBest(i,:) ;
            gBestValue = pBestValue(i) ;
       end
    end
    % 每代最优解对应的目标函数值
    tBest(t) = func_objValue(gBest); %#ok<*SAGROW>
end
figure
plot(tBest);
xlabel('迭代次数') ;
ylabel('适应度值') ;
title('适应度进化曲线') ;

完整代码下载:https://download.csdn.net/download/g425680992/10502951

这里写图片描述

粒子群算法的驱动因素

粒子群算法是一种随机搜索算法 。粒子的下一个位置受到自身历史经验和全局历史经验的双重影响,全局历史经验时刻左右着粒子的更新,群体中一旦出现新的全局最优,则后面的粒子立马应用这个新的全局最优来更新自己,大大提高了效率,相比与一般的算法(如遗传算法的交叉),这个更新过程具有了潜在的指导,而并非盲目的随机 。

自身历史经验和全局历史经验的比例尤其重要,这能左右粒子的下一个位置的大体方向,所以,粒子群算法的改进也多种多样,尤其是针对参数和混合其他算法的改进 。

总体来说,粒子群算法是一种较大概率收敛于全局最优解的,适合在动态、多目标优化环境中寻优的一种高效率的群体智能算法。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/138504.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Python安装Pytorch教程(图文详解)「建议收藏」

    Python安装Pytorch教程(图文详解)「建议收藏」最近人工智能等多门课需要复现论文,近两年的论文很多都是Pytorch环境,所以,这里总结一下Pytorch的安装教程,做好最快、最简单、最好地完成安装。本机环境Win10+1050Ti+Python3.7+1、查看本机的CUDA版本1、打开NVIDIA的控制面板,在开始菜单里面的NVIDIAControlPanel2、在如下界面,帮助—>系统设置3、出现系统信息如下4、然后选择组件,然后看到蓝色的那一行就是英伟达的CUDA版本,可以看到我的是11.1.114

    2022年6月24日
    53
  • Oracle Number 取值范围

    Oracle Number 取值范围1.0E-130&lt;=number&lt;1.0E126.-1.0E126&lt;number&lt;=-1.0E-130 

    2022年7月24日
    8
  • vector insert用法 C++「建议收藏」

    vector insert用法 C++「建议收藏」#include#includeusingnamespacestd;intmain(){vectorv(3);v[0]=2;//v[0]是第0个元素v[1]=7;v[2]=9;v.insert(v.begin(),8);//在最前面插入新元素。v.insert(v.begin()+

    2022年6月17日
    77
  • 各种门平面图画法_关于CAD各种门怎么画平面图就行?[通俗易懂]

    各种门平面图画法_关于CAD各种门怎么画平面图就行?[通俗易懂]回答:CAD怎么画钢琴平面图CAD怎么画出钢琴的平面图呢?很简单的,有需要的朋友动手试试吧。1、启动中望CAD软件,执行“矩形”命令(rec),绘制1575mmX230mm和1575X50mm的直角矩形。2、执行矩形命令和移动命令(M),绘制出如图所示图形。3、执行移动命令,按[F8]键打开“正交”模式,捕捉上一步绘制的矩形中点,将二部分直角矩形图形组合在一起。4、执行“矩形”命令(rec),绘制…

    2022年5月25日
    58
  • Python爬虫—-网页下载器和urllib2模块及对应的实例

    Python爬虫—-网页下载器和urllib2模块及对应的实例网页下载器:将互联网上URL对应的网页下载到本地的工具,是爬虫的核心组件未完。。。

    2022年5月8日
    37
  • 如何测试硬盘软件,win10系统怎么用硬盘检测工具HDTune【图文】「建议收藏」

    如何测试硬盘软件,win10系统怎么用硬盘检测工具HDTune【图文】「建议收藏」HDTune是一款专业的硬盘检测工具,虽然占用内存不大,但是能够全面的检测硬盘的传输速度、温度以及健康状况等。很多新手用户可能并不知道HDTune怎么用,对此,小编特意去整理win10系统硬盘检测工具HDTune的使用方法。具体方法如下:1、HDTune使用方法很简单,打开HDTune硬盘检测工具后我们可以选择硬盘,在主界面就可以看到硬盘的温度;2、在HDTune硬盘检测工具右侧选择读取或者写入,…

    2022年7月15日
    22

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号