讲解最到位的粒子群算法,附matlab代码求解函数最优值

讲解最到位的粒子群算法,附matlab代码求解函数最优值从鸟群觅食行为到粒子群算法粒子群算法的核心例:求解函数最小值粒子群算法的驱动因素从鸟群觅食行为到粒子群算法鸟群寻找食物的过程中,鸟与鸟之间存在着信息的交换,每只鸟搜索目前离食物最近的鸟的周围区域是找到食物的最简单有效的办法。粒子群算法(以下简称PSO)就是模拟鸟群觅食行为的一种彷生算法。解=粒子=鸟(鸟的位置象征着离食物的距离,粒子的位置也象征着…

大家好,又见面了,我是你们的朋友全栈君。

从鸟群觅食行为到粒子群算法

这里写图片描述

鸟群寻找食物的过程中,鸟与鸟之间存在着信息的交换,每只鸟搜索目前离食物最近的鸟的周围区域是找到食物的最简单有效的办法。

粒子群算法(以下简称PSO)就是模拟鸟群觅食行为的一种彷生算法 。 解=粒子=鸟 (鸟的位置象征着离食物的距离,粒子的位置也象征着离最优解的距离,是评价解质量的唯一标准), 找食物=找最优解,一个西瓜=一个粒子找到的历史最优解,一块肉=整个粒子群找到历史最优解 ,

就像鸟的飞行路线会受到自己曾经寻找到的最优食物和鸟群曾经找到过的最优食物的双重影响一样,算法中,每一次迭代,粒子通过两个”极值”(全局历史最优解gBest和个体历史最优解pBest)来更新自己的速度,该速度又是更新粒子位置的关键,而粒子的位置象征着离最优解的距离,也是评价该粒子(解)的唯一标准 。

粒子群算法的核心

该算法的核心是如何根据pBest与gBest来更新粒子的速度和位置,标准粒子群给出了如下的更新公式:

$ V_{t+1} =w \cdot V_t +c_1r_1\cdot(pBest-X_t) +c_2r_2\cdot(gBest-X_t) $

X t + 1 = X t + V t + 1 X_{t+1} = X_t+V_{t+1} Xt+1=Xt+Vt+1

$其中 , t:代数 , X是位置,V是速度,w是惯性权重,c是学习因子,r是随机数 $

这里写图片描述

如上图所示,假设这是一个在2维平面内寻找最优解的待求解问题,某一时间的某一粒子 X t X_t Xt处在原点位置 。则该粒子更新后的速度如上图所示 。 更新公式可以分为三个部门:

  • Part.1 : “惯性”或”动量”部分,反映粒子有维持自己先前速度的趋势
  • Part.2 : “认知”部门 , 反映粒子有向自身历史最优位置逼近的趋势
  • Part.3 : “社会”部门 , 反映粒子有向去群体历史最优位置逼近的趋势

例 : 求解函数最小值

​ 求$f(x)=\sum_{i=1}{n}x_i2,(-20 \leq x\leq 20,n=10) $ 的最小值 ?

% author zhaoyuqiang
clear all ;
close all ;
clc ;
N = 100 ; % 种群规模
D = 10 ; % 粒子维度
T = 100 ; % 迭代次数
Xmax = 20 ;
Xmin = -20 ;
C1 = 1.5 ; % 学习因子1
C2 = 1.5 ; % 学习因子2
W = 0.8 ; % 惯性权重
Vmax = 10 ; % 最大飞行速度
Vmin = -10 ; % 最小飞行速度
popx = rand(N,D)*(Xmax-Xmin)+Xmin ; % 初始化粒子群的位置(粒子位置是一个D维向量)
popv = rand(N,D)*(Vmax-Vmin)+Vmin ; % 初始化粒子群的速度(粒子速度是一个D维度向量) 
% 初始化每个历史最优粒子
pBest = popx ; 
pBestValue = func_fitness(pBest) ; 
%初始化全局历史最优粒子
[gBestValue,index] = max(func_fitness(popx)) ;
gBest = popx(index,:) ;
for t=1:T
    for i=1:N
        % 更新个体的位置和速度
        popv(i,:) = W*popv(i,:)+C1*rand*(pBest(i,:)-popx(i,:))+C2*rand*(gBest-popx(i,:)) ;
        popx(i,:) = popx(i,:)+popv(i,:) ;
        % 边界处理,超过定义域范围就取该范围极值
        index = find(popv(i,:)>Vmax | popv(i,:)<Vmin);
        popv(i,index) = rand*(Vmax-Vmin)+Vmin ; %#ok<*FNDSB>
        index = find(popx(i,:)>Xmax | popx(i,:)<Xmin);
        popx(i,index) = rand*(Xmax-Xmin)+Xmin ;
        % 更新粒子历史最优
        if func_fitness(popx(i,:))>pBestValue(i)    
           pBest(i,:) = popx(i,:) ;
           pBestValue(i) = func_fitness(popx(i,:));
        end
       if pBestValue(i) > gBestValue
            gBest = pBest(i,:) ;
            gBestValue = pBestValue(i) ;
       end
    end
    % 每代最优解对应的目标函数值
    tBest(t) = func_objValue(gBest); %#ok<*SAGROW>
end
figure
plot(tBest);
xlabel('迭代次数') ;
ylabel('适应度值') ;
title('适应度进化曲线') ;

完整代码下载:https://download.csdn.net/download/g425680992/10502951

这里写图片描述

粒子群算法的驱动因素

粒子群算法是一种随机搜索算法 。粒子的下一个位置受到自身历史经验和全局历史经验的双重影响,全局历史经验时刻左右着粒子的更新,群体中一旦出现新的全局最优,则后面的粒子立马应用这个新的全局最优来更新自己,大大提高了效率,相比与一般的算法(如遗传算法的交叉),这个更新过程具有了潜在的指导,而并非盲目的随机 。

自身历史经验和全局历史经验的比例尤其重要,这能左右粒子的下一个位置的大体方向,所以,粒子群算法的改进也多种多样,尤其是针对参数和混合其他算法的改进 。

总体来说,粒子群算法是一种较大概率收敛于全局最优解的,适合在动态、多目标优化环境中寻优的一种高效率的群体智能算法。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/138504.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • SLAM算法解析[通俗易懂]

    SLAM算法解析[通俗易懂]【嵌牛导读】:SLAM(SimultaneousLocalizationandMapping)是业界公认视觉领域空间定位技术的前沿方向,中文译名为「同步定位与地图构建」,它主要用于解决机器人在未知环境运动时的定位和地图构建问题。【嵌牛鼻子】:有人就曾打比方,若是手机离开了WIFI和数据网络,就像无人车和机器人,离开了SLAM一样。【嵌牛正文】:目前科技发展速度飞快,想让用户在AR/VR、机器人、无人机、无人驾驶领域体验加强,还是需要更多前沿技术做支持,SLAM就是其中之一。实际上

    2022年6月29日
    42
  • mac系统安装pycharm_mac下载python3

    mac系统安装pycharm_mac下载python3简介pycharm是一款针对python开发的优秀的IDE,以下是针对其在mac上的开发配置使用安装下载链接双击安装并打开应用修改主题pycharm默认的主题并不好看,不过也提供了一些其他的选择,这里我们选择Dacula的主体,设置的路径是Preference->Appearence&Behavior->Appearence效果如下python环境配置py开发当然是…

    2022年8月28日
    6
  • Linux用netstat查看服务及监听端口详解

    Linux用netstat查看服务及监听端口详解在Linux使用过程中,需要了解当前系统开放了哪些端口,并且要查看开放这些端口的具体进程和用户,可以通过netstat命令进行简单查询netstat命令各个参数说明如下:-a或–all显示所有连线中的Socket。-A<网络类型>或–…

    2022年7月23日
    10
  • netty bytebuffer_netty源码剖析与实战

    netty bytebuffer_netty源码剖析与实战一、背景简介ByteBuf,顾名思义,就是字节缓冲区,是Netty中非常重要的一个组件。熟悉jdkNIO的同学应该知道ByteBuffer,正是因为jdk原生ByteBuffer使用比较复杂,某些场景下性能不是太好,netty开发团队重新设计了ByteBuf用以替代原生ByteBuffer。二、ByteBuf和ByteBuffer对比下面用图示来展示ByteBuf和ByteBuffer工作原理:①、ByteBufferByteBuffer依靠flip()来切换模式,在读模式下..

    2026年1月24日
    4
  • ICMP报文详解之ping实现「建议收藏」

    ICMP报文详解之ping实现「建议收藏」ping是向网络主机发送ICMP回显请求(ECHO_REQUEST)分组,是TCP/IP协议的一部分。主要可以检查网络是否通畅或者网络连接速度快慢,从而判断网络是否正常。ping命令底层使用的是ICMP,ICMP报文封装在ip包里。它是一个对IP协议的补充协议,允许主机或路由器报告差错情况和异常状况。ICMP报文格式和各个字段的含义…

    2022年5月8日
    49
  • 看板娘代码

    看板娘代码大部分摘自:https://www.cnblogs.com/hean/p/11167216.html需要三个文件和一个可选文件waifu.css(看板娘在页面的位置以及大小)waifu-tips.js(看板娘的语言设置)live2d.min.js(一些点击之后的动作)flat-ui.min.css(看板娘的选项PS:右面的选项,不需要可以不配置)链接:https://…

    2025年5月24日
    5

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号