完美解决Tensorflow不支持AVX2指令集问题|指令集加速

完美解决Tensorflow不支持AVX2指令集问题|指令集加速在pycharm中安装tensorflow后运行如下测试代码:importtensorflowastfx=tf.Variable(3,name=”x”)y=tf.Variable(4,name=”y”)f=x*x*y+y+2print(f)发现会报一行错误YourCPUsupportsinstructionsthatthisTensorFlowbinarywasnotcompiledtouse:AVX2大概意思是安装的tensorf

大家好,又见面了,我是你们的朋友全栈君。

在pycharm中安装tensorflow后
在这里插入图片描述
运行如下测试代码:

import tensorflow as tf
x = tf.Variable(3, name="x")
y = tf.Variable(4, name="y")
f = x*x*y + y + 2
print(f)

发现会报一行错误在这里插入图片描述
Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2大概意思是安装的tensorflow版本不支持cpu的AVX2编译
可能是因为安装时使用的pip install tensorflow ,这样默认会下载X86_64的SIMD版本。
查找解决办法后,有以下两种办法:

1.忽略屏蔽这个警告

在代码最前面添加如下两行代码

import os
os.environ["TF_CPP_MIN_LOG_LEVEL"]='2' # 只显示 warning 和 Error

2.彻底解决,换成支持cpu用AVX2编译的TensorFlow版本。

首先卸载原来安装的tensorflow版本
pip uninstall tensorflow
在这里下载对应版本的tensorflow:https://github.com/fo40225/tensorflow-windows-wheel,比如我需要的是CPU+AVX2+Python3.6,那么我就在下面的列表中选择这个:
在这里插入图片描述

Path Compiler CUDA/cuDNN SIMD Notes
2.2.0\py37\CPU+GPU\cuda102cudnn76sse2 VS2019 16.5 10.2.89_441.22/7.6.5.32 x86_64 Python 3.7/Compute 3.0
2.2.0\py37\CPU+GPU\cuda102cudnn76avx2 VS2019 16.5 10.2.89_441.22/7.6.5.32 AVX2 Python 3.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5
2.1.0\py37\CPU+GPU\cuda102cudnn76sse2 VS2019 16.4 10.2.89_441.22/7.6.5.32 x86_64 Python 3.7/Compute 3.0
2.1.0\py37\CPU+GPU\cuda102cudnn76avx2 VS2019 16.4 10.2.89_441.22/7.6.5.32 AVX2 Python 3.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5
2.0.0\py37\CPU\sse2 VS2019 16.3 No x86_64 Python 3.7
2.0.0\py37\CPU\avx2 VS2019 16.3 No AVX2 Python 3.7
2.0.0\py37\GPU\cuda101cudnn76sse2 VS2019 16.3 10.1.243_426.00/7.6.4.38 x86_64 Python 3.7/Compute 3.0
2.0.0\py37\GPU\cuda101cudnn76avx2 VS2019 16.3 10.1.243_426.00/7.6.4.38 AVX2 Python 3.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5
1.15.0\py37\CPU+GPU\cuda101cudnn76sse2 VS2019 16.3 10.1.243_426.00/7.6.4.38 x86_64 Python 3.7/Compute 3.0
1.15.0\py37\CPU+GPU\cuda101cudnn76avx2 VS2019 16.3 10.1.243_426.00/7.6.4.38 AVX2 Python 3.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5
1.14.0\py37\CPU\sse2 VS2019 16.1 No x86_64 Python 3.7
1.14.0\py37\CPU\avx2 VS2019 16.1 No AVX2 Python 3.7
1.14.0\py37\GPU\cuda101cudnn76sse2 VS2019 16.1 10.1.168_425.25/7.6.0.64 x86_64 Python 3.7/Compute 3.0
1.14.0\py37\GPU\cuda101cudnn76avx2 VS2019 16.1 10.1.168_425.25/7.6.0.64 AVX2 Python 3.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5
1.13.1\py37\CPU\sse2 VS2017 15.9 No x86_64 Python 3.7
1.13.1\py37\CPU\avx2 VS2017 15.9 No AVX2 Python 3.7
1.13.1\py37\GPU\cuda101cudnn75sse2 VS2017 15.9 10.1.105_418.96/7.5.0.56 x86_64 Python 3.7/Compute 3.0
1.13.1\py37\GPU\cuda101cudnn75avx2 VS2017 15.9 10.1.105_418.96/7.5.0.56 AVX2 Python 3.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5
1.12.0\py36\CPU\sse2 VS2017 15.8 No x86_64 Python 3.6
1.12.0\py36\CPU\avx2 VS2017 15.8 No AVX2 Python 3.6
1.12.0\py36\GPU\cuda100cudnn73sse2 VS2017 15.8 10.0.130_411.31/7.3.1.20 x86_64 Python 3.6/Compute 3.0
1.12.0\py36\GPU\cuda100cudnn73avx2 VS2017 15.8 10.0.130_411.31/7.3.1.20 AVX2 Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5
1.12.0\py37\CPU\sse2 VS2017 15.8 No x86_64 Python 3.7
1.12.0\py37\CPU\avx2 VS2017 15.8 No AVX2 Python 3.7
1.12.0\py37\GPU\cuda100cudnn73sse2 VS2017 15.8 10.0.130_411.31/7.3.1.20 x86_64 Python 3.7/Compute 3.0
1.12.0\py37\GPU\cuda100cudnn73avx2 VS2017 15.8 10.0.130_411.31/7.3.1.20 AVX2 Python 3.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5
1.11.0\py36\CPU\sse2 VS2017 15.8 No x86_64 Python 3.6
1.11.0\py36\CPU\avx2 VS2017 15.8 No AVX2 Python 3.6
1.11.0\py36\GPU\cuda100cudnn73sse2 VS2017 15.8 10.0.130_411.31/7.3.0.29 x86_64 Python 3.6/Compute 3.0
1.11.0\py36\GPU\cuda100cudnn73avx2 VS2017 15.8 10.0.130_411.31/7.3.0.29 AVX2 Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5
1.11.0\py37\CPU\sse2 VS2017 15.8 No x86_64 Python 3.7
1.11.0\py37\CPU\avx2 VS2017 15.8 No AVX2 Python 3.7
1.11.0\py37\GPU\cuda100cudnn73sse2 VS2017 15.8 10.0.130_411.31/7.3.0.29 x86_64 Python 3.7/Compute 3.0
1.11.0\py37\GPU\cuda100cudnn73avx2 VS2017 15.8 10.0.130_411.31/7.3.0.29 AVX2 Python 3.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5
1.10.0\py36\CPU\sse2 VS2017 15.8 No x86_64 Python 3.6
1.10.0\py36\CPU\avx2 VS2017 15.8 No AVX2 Python 3.6
1.10.0\py36\GPU\cuda92cudnn72sse2 VS2017 15.8 9.2.148.1/7.2.1.38 x86_64 Python 3.6/Compute 3.0
1.10.0\py36\GPU\cuda92cudnn72avx2 VS2017 15.8 9.2.148.1/7.2.1.38 AVX2 Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.10.0\py27\CPU\sse2 VS2017 15.8 No x86_64 Python 2.7
1.10.0\py27\CPU\avx2 VS2017 15.8 No AVX2 Python 2.7
1.10.0\py27\GPU\cuda92cudnn72sse2 VS2017 15.8 9.2.148.1/7.2.1.38 x86_64 Python 2.7/Compute 3.0
1.10.0\py27\GPU\cuda92cudnn72avx2 VS2017 15.8 9.2.148.1/7.2.1.38 AVX2 Python 2.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.9.0\py36\CPU\sse2 VS2017 15.7 No x86_64 Python 3.6
1.9.0\py36\CPU\avx2 VS2017 15.7 No AVX2 Python 3.6
1.9.0\py36\GPU\cuda92cudnn71sse2 VS2017 15.7 9.2.148/7.1.4 x86_64 Python 3.6/Compute 3.0
1.9.0\py36\GPU\cuda92cudnn71avx2 VS2017 15.7 9.2.148/7.1.4 AVX2 Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.9.0\py27\CPU\sse2 VS2017 15.7 No x86_64 Python 2.7
1.9.0\py27\CPU\avx2 VS2017 15.7 No AVX2 Python 2.7
1.9.0\py27\GPU\cuda92cudnn71sse2 VS2017 15.7 9.2.148/7.1.4 x86_64 Python 2.7/Compute 3.0
1.9.0\py27\GPU\cuda92cudnn71avx2 VS2017 15.7 9.2.148/7.1.4 AVX2 Python 2.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.8.0\py36\CPU\sse2 VS2017 15.4 No x86_64 Python 3.6
1.8.0\py36\CPU\avx2 VS2017 15.4 No AVX2 Python 3.6
1.8.0\py36\GPU\cuda91cudnn71sse2 VS2017 15.4 9.1.85.3/7.1.3 x86_64 Python 3.6/Compute 3.0
1.8.0\py36\GPU\cuda91cudnn71avx2 VS2017 15.4 9.1.85.3/7.1.3 AVX2 Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.8.0\py27\CPU\sse2 VS2017 15.4 No x86_64 Python 2.7
1.8.0\py27\CPU\avx2 VS2017 15.4 No AVX2 Python 2.7
1.8.0\py27\GPU\cuda91cudnn71sse2 VS2017 15.4 9.1.85.3/7.1.3 x86_64 Python 2.7/Compute 3.0
1.8.0\py27\GPU\cuda91cudnn71avx2 VS2017 15.4 9.1.85.3/7.1.3 AVX2 Python 2.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.7.0\py36\CPU\sse2 VS2017 15.4 No x86_64 Python 3.6
1.7.0\py36\CPU\avx2 VS2017 15.4 No AVX2 Python 3.6
1.7.0\py36\GPU\cuda91cudnn71sse2 VS2017 15.4 9.1.85.3/7.1.2 x86_64 Python 3.6/Compute 3.0
1.7.0\py36\GPU\cuda91cudnn71avx2 VS2017 15.4 9.1.85.3/7.1.2 AVX2 Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.7.0\py27\CPU\sse2 VS2017 15.4 No x86_64 Python 2.7
1.7.0\py27\CPU\avx2 VS2017 15.4 No AVX2 Python 2.7
1.7.0\py27\GPU\cuda91cudnn71sse2 VS2017 15.4 9.1.85.3/7.1.2 x86_64 Python 2.7/Compute 3.0
1.7.0\py27\GPU\cuda91cudnn71avx2 VS2017 15.4 9.1.85.3/7.1.2 AVX2 Python 2.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.6.0\py36\CPU\sse2 VS2017 15.4 No x86_64 Python 3.6
1.6.0\py36\CPU\avx2 VS2017 15.4 No AVX2 Python 3.6
1.6.0\py36\GPU\cuda91cudnn71sse2 VS2017 15.4 9.1.85.3/7.1.1 x86_64 Python 3.6/Compute 3.0
1.6.0\py36\GPU\cuda91cudnn71avx2 VS2017 15.4 9.1.85.3/7.1.1 AVX2 Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.6.0\py27\CPU\sse2 VS2017 15.4 No x86_64 Python 2.7
1.6.0\py27\CPU\avx2 VS2017 15.4 No AVX2 Python 2.7
1.6.0\py27\GPU\cuda91cudnn71sse2 VS2017 15.4 9.1.85.2/7.1.1 x86_64 Python 2.7/Compute 3.0
1.6.0\py27\GPU\cuda91cudnn71avx2 VS2017 15.4 9.1.85.2/7.1.1 AVX2 Python 2.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.5.0\py36\CPU\avx VS2017 15.4 No AVX Python 3.6
1.5.0\py36\CPU\avx2 VS2017 15.4 No AVX2 Python 3.6
1.5.0\py36\GPU\cuda91cudnn7avx2 VS2017 15.4 9.1.85/7.0.5 AVX2 Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.5.0\py27\CPU\sse2 VS2017 15.4 No x86_64 Python 2.7
1.5.0\py27\CPU\avx VS2017 15.4 No AVX Python 2.7
1.5.0\py27\CPU\avx2 VS2017 15.4 No AVX2 Python 2.7
1.5.0\py27\GPU\cuda91cudnn7sse2 VS2017 15.4 9.1.85/7.0.5 x86_64 Python 2.7/Compute 3.0
1.5.0\py27\GPU\cuda91cudnn7avx2 VS2017 15.4 9.1.85/7.0.5 AVX2 Python 2.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.4.0\py36\CPU\avx VS2017 15.4 No AVX Python 3.6
1.4.0\py36\CPU\avx2 VS2017 15.4 No AVX2 Python 3.6
1.4.0\py36\GPU\cuda91cudnn7avx2 VS2017 15.4 9.1.85/7.0.5 AVX2 Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.3.0\py36\CPU\avx VS2015 Update 3 No AVX Python 3.6
1.3.0\py36\CPU\avx2 VS2015 Update 3 No AVX2 Python 3.6
1.3.0\py36\GPU\cuda8cudnn6avx2 VS2015 Update 3 8.0.61.2/6.0.21 AVX2 Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1
1.2.1\py36\CPU\avx VS2015 Update 3 No AVX Python 3.6
1.2.1\py36\CPU\avx2 VS2015 Update 3 No AVX2 Python 3.6
1.2.1\py36\GPU\cuda8cudnn6avx2 VS2015 Update 3 8.0.61.2/6.0.21 AVX2 Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1
1.1.0\py36\CPU\avx VS2015 Update 3 No AVX Python 3.6
1.1.0\py36\CPU\avx2 VS2015 Update 3 No AVX2 Python 3.6
1.1.0\py36\GPU\cuda8cudnn6avx2 VS2015 Update 3 8.0.61.2/6.0.21 AVX2 Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1
1.0.0\py36\CPU\sse2 VS2015 Update 3 No x86_64 Python 3.6
1.0.0\py36\CPU\avx VS2015 Update 3 No AVX Python 3.6
1.0.0\py36\CPU\avx2 VS2015 Update 3 No AVX2 Python 3.6
1.0.0\py36\GPU\cuda8cudnn51sse2 VS2015 Update 3 8.0.61.2/5.1.10 x86_64 Python 3.6/Compute 3.0
1.0.0\py36\GPU\cuda8cudnn51avx2 VS2015 Update 3 8.0.61.2/5.1.10 AVX2 Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1
0.12.0\py35\CPU\avx VS2015 Update 3 No AVX Python 3.5
0.12.0\py35\CPU\avx2 VS2015 Update 3 No AVX2 Python 3.5
0.12.0\py35\GPU\cuda8cudnn51avx2 VS2015 Update 3 8.0.61.2/5.1.10 AVX2 Python 3.5/Compute 3.0,3.5,5.0,5.2,6.1

找到对应的.whl文件
在这里插入图片描述
下载该文件,我用google浏览器下载一直显示无法访问
在这里插入图片描述
后来选用Edge浏览器打开就好啦,直接就下载成功了。
此处放上tensorflow-1.12.0-cp36-cp36m-win_amd64.whl的下载链接:
链接:https://pan.baidu.com/s/1CvKUtmM1zHyJyJk87eFEUA
提取码:o85f
然后用activate 进入自己创建的虚拟环境
在这里插入图片描述
运行pip install tensorflow-1.12.0-cp36-cp36m-win_amd64.whl命令安装
在这里插入图片描述
最后用conda list命令看安装了那些包
在这里插入图片描述
然后再次运行代码,就不会报AVX2的错误啦
在这里插入图片描述

  • 参考链接:https://blog.csdn.net/beyond9305/article/details/95896135
  • https://www.jb51.net/article/179405.htm
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/139439.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 罗马字符的读音「建议收藏」

    罗马字符的读音「建议收藏」Αα阿尔法alfaΒβ贝塔bitaΓγ伽马gamaΔδ德耳塔dêltaΕε艾普西龙êpsilonΖζ度截塔zitaΗη艾塔yitaΘθ西塔sitaΙι约塔yotaΚκ卡帕kapa∧λ兰布达lamdaΜμ米尤miuΝν纽niuΞξ克西ksaiΟο奥密克戎oumikelong∏π派paiΡρ版若rou…

    2022年9月30日
    2
  • 2021最新C++面试题(附答案)

    2021最新C++面试题(附答案)今天分享给大家的是比较全面的 C C 面试题 也都是 C 版本升级之后 重新整理归纳的最新答案 会让 C 面试者少走很多不必要的弯路 同时每个 C 面试题都尽量做到了详尽的面试解析文档 以确保每个阶段的读者都能看得懂 同时这部分 C 面试文档也是可以免费的提供给有需要的同学们学习的 一 计算机基础更多阿里 百度 华为 美团 腾讯 头条 C 面试题可以关注微信公众号 C 和 C 加加 回复 面试题 即可获取相关 C 面试题 1 C C 内存有哪几种类型 C 中 内存分为 5 个区 堆 malloc

    2025年10月17日
    4
  • 获取WebView里的网页文本内容[通俗易懂]

    获取WebView里的网页文本内容

    2022年1月27日
    41
  • 最小生成树的个数_最小生成树的两种算法

    最小生成树的个数_最小生成树的两种算法给定一张 N 个点 M 条边的无向图,求无向图的严格次小生成树。设最小生成树的边权之和为 sum,严格次小生成树就是指边权之和大于 sum 的生成树中最小的一个。输入格式第一行包含两个整数 N 和 M。接下来 M 行,每行包含三个整数 x,y,z,表示点 x 和点 y 之前存在一条边,边的权值为 z。输出格式包含一行,仅一个数,表示严格次小生成树的边权和。(数据保证必定存在严格次小生成树)数据范围N≤105,M≤3×105输入样例:5 61 2 11 3 22 4 33 5 4

    2022年8月9日
    8
  • toArray()方法使用说明「建议收藏」

    toArray()方法使用说明「建议收藏」ArrayList提供了一个将List转为数组的一个非常方便的方法toArray。toArray有两个重载的方法:1.list.toArray();2.list.toArray(T[] a);对于第一个重载方法,是将list直接转为Object[]数组;第二种方法是将list转化为你所需要类型的数组,当然我们用的时候会转化为与list内容相同的类型。

    2022年5月15日
    52
  • Node.js详细安装教程

    Node.js详细安装教程一、安装环境1、本机系统:Windows10Pro(64位)2、Node.js:v6.9.2LTS(64位)二、安装Node.js步骤1、下载对应你系统的Node.js版本:https://nodejs.org/en/download/2、选安装目录进行安装3、环境配置4、测试三、前期准备1、Node.js简介简单的说Node.js就是运行在服务端的JavaScript。Node.js是一个基于ChromeV8引擎的JavaScript运行环境。Node.js使用

    2022年7月16日
    27

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号