完美解决Tensorflow不支持AVX2指令集问题|指令集加速

完美解决Tensorflow不支持AVX2指令集问题|指令集加速在pycharm中安装tensorflow后运行如下测试代码:importtensorflowastfx=tf.Variable(3,name=”x”)y=tf.Variable(4,name=”y”)f=x*x*y+y+2print(f)发现会报一行错误YourCPUsupportsinstructionsthatthisTensorFlowbinarywasnotcompiledtouse:AVX2大概意思是安装的tensorf

大家好,又见面了,我是你们的朋友全栈君。

在pycharm中安装tensorflow后
在这里插入图片描述
运行如下测试代码:

import tensorflow as tf
x = tf.Variable(3, name="x")
y = tf.Variable(4, name="y")
f = x*x*y + y + 2
print(f)

发现会报一行错误在这里插入图片描述
Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2大概意思是安装的tensorflow版本不支持cpu的AVX2编译
可能是因为安装时使用的pip install tensorflow ,这样默认会下载X86_64的SIMD版本。
查找解决办法后,有以下两种办法:

1.忽略屏蔽这个警告

在代码最前面添加如下两行代码

import os
os.environ["TF_CPP_MIN_LOG_LEVEL"]='2' # 只显示 warning 和 Error

2.彻底解决,换成支持cpu用AVX2编译的TensorFlow版本。

首先卸载原来安装的tensorflow版本
pip uninstall tensorflow
在这里下载对应版本的tensorflow:https://github.com/fo40225/tensorflow-windows-wheel,比如我需要的是CPU+AVX2+Python3.6,那么我就在下面的列表中选择这个:
在这里插入图片描述

Path Compiler CUDA/cuDNN SIMD Notes
2.2.0\py37\CPU+GPU\cuda102cudnn76sse2 VS2019 16.5 10.2.89_441.22/7.6.5.32 x86_64 Python 3.7/Compute 3.0
2.2.0\py37\CPU+GPU\cuda102cudnn76avx2 VS2019 16.5 10.2.89_441.22/7.6.5.32 AVX2 Python 3.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5
2.1.0\py37\CPU+GPU\cuda102cudnn76sse2 VS2019 16.4 10.2.89_441.22/7.6.5.32 x86_64 Python 3.7/Compute 3.0
2.1.0\py37\CPU+GPU\cuda102cudnn76avx2 VS2019 16.4 10.2.89_441.22/7.6.5.32 AVX2 Python 3.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5
2.0.0\py37\CPU\sse2 VS2019 16.3 No x86_64 Python 3.7
2.0.0\py37\CPU\avx2 VS2019 16.3 No AVX2 Python 3.7
2.0.0\py37\GPU\cuda101cudnn76sse2 VS2019 16.3 10.1.243_426.00/7.6.4.38 x86_64 Python 3.7/Compute 3.0
2.0.0\py37\GPU\cuda101cudnn76avx2 VS2019 16.3 10.1.243_426.00/7.6.4.38 AVX2 Python 3.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5
1.15.0\py37\CPU+GPU\cuda101cudnn76sse2 VS2019 16.3 10.1.243_426.00/7.6.4.38 x86_64 Python 3.7/Compute 3.0
1.15.0\py37\CPU+GPU\cuda101cudnn76avx2 VS2019 16.3 10.1.243_426.00/7.6.4.38 AVX2 Python 3.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5
1.14.0\py37\CPU\sse2 VS2019 16.1 No x86_64 Python 3.7
1.14.0\py37\CPU\avx2 VS2019 16.1 No AVX2 Python 3.7
1.14.0\py37\GPU\cuda101cudnn76sse2 VS2019 16.1 10.1.168_425.25/7.6.0.64 x86_64 Python 3.7/Compute 3.0
1.14.0\py37\GPU\cuda101cudnn76avx2 VS2019 16.1 10.1.168_425.25/7.6.0.64 AVX2 Python 3.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5
1.13.1\py37\CPU\sse2 VS2017 15.9 No x86_64 Python 3.7
1.13.1\py37\CPU\avx2 VS2017 15.9 No AVX2 Python 3.7
1.13.1\py37\GPU\cuda101cudnn75sse2 VS2017 15.9 10.1.105_418.96/7.5.0.56 x86_64 Python 3.7/Compute 3.0
1.13.1\py37\GPU\cuda101cudnn75avx2 VS2017 15.9 10.1.105_418.96/7.5.0.56 AVX2 Python 3.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5
1.12.0\py36\CPU\sse2 VS2017 15.8 No x86_64 Python 3.6
1.12.0\py36\CPU\avx2 VS2017 15.8 No AVX2 Python 3.6
1.12.0\py36\GPU\cuda100cudnn73sse2 VS2017 15.8 10.0.130_411.31/7.3.1.20 x86_64 Python 3.6/Compute 3.0
1.12.0\py36\GPU\cuda100cudnn73avx2 VS2017 15.8 10.0.130_411.31/7.3.1.20 AVX2 Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5
1.12.0\py37\CPU\sse2 VS2017 15.8 No x86_64 Python 3.7
1.12.0\py37\CPU\avx2 VS2017 15.8 No AVX2 Python 3.7
1.12.0\py37\GPU\cuda100cudnn73sse2 VS2017 15.8 10.0.130_411.31/7.3.1.20 x86_64 Python 3.7/Compute 3.0
1.12.0\py37\GPU\cuda100cudnn73avx2 VS2017 15.8 10.0.130_411.31/7.3.1.20 AVX2 Python 3.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5
1.11.0\py36\CPU\sse2 VS2017 15.8 No x86_64 Python 3.6
1.11.0\py36\CPU\avx2 VS2017 15.8 No AVX2 Python 3.6
1.11.0\py36\GPU\cuda100cudnn73sse2 VS2017 15.8 10.0.130_411.31/7.3.0.29 x86_64 Python 3.6/Compute 3.0
1.11.0\py36\GPU\cuda100cudnn73avx2 VS2017 15.8 10.0.130_411.31/7.3.0.29 AVX2 Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5
1.11.0\py37\CPU\sse2 VS2017 15.8 No x86_64 Python 3.7
1.11.0\py37\CPU\avx2 VS2017 15.8 No AVX2 Python 3.7
1.11.0\py37\GPU\cuda100cudnn73sse2 VS2017 15.8 10.0.130_411.31/7.3.0.29 x86_64 Python 3.7/Compute 3.0
1.11.0\py37\GPU\cuda100cudnn73avx2 VS2017 15.8 10.0.130_411.31/7.3.0.29 AVX2 Python 3.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5
1.10.0\py36\CPU\sse2 VS2017 15.8 No x86_64 Python 3.6
1.10.0\py36\CPU\avx2 VS2017 15.8 No AVX2 Python 3.6
1.10.0\py36\GPU\cuda92cudnn72sse2 VS2017 15.8 9.2.148.1/7.2.1.38 x86_64 Python 3.6/Compute 3.0
1.10.0\py36\GPU\cuda92cudnn72avx2 VS2017 15.8 9.2.148.1/7.2.1.38 AVX2 Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.10.0\py27\CPU\sse2 VS2017 15.8 No x86_64 Python 2.7
1.10.0\py27\CPU\avx2 VS2017 15.8 No AVX2 Python 2.7
1.10.0\py27\GPU\cuda92cudnn72sse2 VS2017 15.8 9.2.148.1/7.2.1.38 x86_64 Python 2.7/Compute 3.0
1.10.0\py27\GPU\cuda92cudnn72avx2 VS2017 15.8 9.2.148.1/7.2.1.38 AVX2 Python 2.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.9.0\py36\CPU\sse2 VS2017 15.7 No x86_64 Python 3.6
1.9.0\py36\CPU\avx2 VS2017 15.7 No AVX2 Python 3.6
1.9.0\py36\GPU\cuda92cudnn71sse2 VS2017 15.7 9.2.148/7.1.4 x86_64 Python 3.6/Compute 3.0
1.9.0\py36\GPU\cuda92cudnn71avx2 VS2017 15.7 9.2.148/7.1.4 AVX2 Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.9.0\py27\CPU\sse2 VS2017 15.7 No x86_64 Python 2.7
1.9.0\py27\CPU\avx2 VS2017 15.7 No AVX2 Python 2.7
1.9.0\py27\GPU\cuda92cudnn71sse2 VS2017 15.7 9.2.148/7.1.4 x86_64 Python 2.7/Compute 3.0
1.9.0\py27\GPU\cuda92cudnn71avx2 VS2017 15.7 9.2.148/7.1.4 AVX2 Python 2.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.8.0\py36\CPU\sse2 VS2017 15.4 No x86_64 Python 3.6
1.8.0\py36\CPU\avx2 VS2017 15.4 No AVX2 Python 3.6
1.8.0\py36\GPU\cuda91cudnn71sse2 VS2017 15.4 9.1.85.3/7.1.3 x86_64 Python 3.6/Compute 3.0
1.8.0\py36\GPU\cuda91cudnn71avx2 VS2017 15.4 9.1.85.3/7.1.3 AVX2 Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.8.0\py27\CPU\sse2 VS2017 15.4 No x86_64 Python 2.7
1.8.0\py27\CPU\avx2 VS2017 15.4 No AVX2 Python 2.7
1.8.0\py27\GPU\cuda91cudnn71sse2 VS2017 15.4 9.1.85.3/7.1.3 x86_64 Python 2.7/Compute 3.0
1.8.0\py27\GPU\cuda91cudnn71avx2 VS2017 15.4 9.1.85.3/7.1.3 AVX2 Python 2.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.7.0\py36\CPU\sse2 VS2017 15.4 No x86_64 Python 3.6
1.7.0\py36\CPU\avx2 VS2017 15.4 No AVX2 Python 3.6
1.7.0\py36\GPU\cuda91cudnn71sse2 VS2017 15.4 9.1.85.3/7.1.2 x86_64 Python 3.6/Compute 3.0
1.7.0\py36\GPU\cuda91cudnn71avx2 VS2017 15.4 9.1.85.3/7.1.2 AVX2 Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.7.0\py27\CPU\sse2 VS2017 15.4 No x86_64 Python 2.7
1.7.0\py27\CPU\avx2 VS2017 15.4 No AVX2 Python 2.7
1.7.0\py27\GPU\cuda91cudnn71sse2 VS2017 15.4 9.1.85.3/7.1.2 x86_64 Python 2.7/Compute 3.0
1.7.0\py27\GPU\cuda91cudnn71avx2 VS2017 15.4 9.1.85.3/7.1.2 AVX2 Python 2.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.6.0\py36\CPU\sse2 VS2017 15.4 No x86_64 Python 3.6
1.6.0\py36\CPU\avx2 VS2017 15.4 No AVX2 Python 3.6
1.6.0\py36\GPU\cuda91cudnn71sse2 VS2017 15.4 9.1.85.3/7.1.1 x86_64 Python 3.6/Compute 3.0
1.6.0\py36\GPU\cuda91cudnn71avx2 VS2017 15.4 9.1.85.3/7.1.1 AVX2 Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.6.0\py27\CPU\sse2 VS2017 15.4 No x86_64 Python 2.7
1.6.0\py27\CPU\avx2 VS2017 15.4 No AVX2 Python 2.7
1.6.0\py27\GPU\cuda91cudnn71sse2 VS2017 15.4 9.1.85.2/7.1.1 x86_64 Python 2.7/Compute 3.0
1.6.0\py27\GPU\cuda91cudnn71avx2 VS2017 15.4 9.1.85.2/7.1.1 AVX2 Python 2.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.5.0\py36\CPU\avx VS2017 15.4 No AVX Python 3.6
1.5.0\py36\CPU\avx2 VS2017 15.4 No AVX2 Python 3.6
1.5.0\py36\GPU\cuda91cudnn7avx2 VS2017 15.4 9.1.85/7.0.5 AVX2 Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.5.0\py27\CPU\sse2 VS2017 15.4 No x86_64 Python 2.7
1.5.0\py27\CPU\avx VS2017 15.4 No AVX Python 2.7
1.5.0\py27\CPU\avx2 VS2017 15.4 No AVX2 Python 2.7
1.5.0\py27\GPU\cuda91cudnn7sse2 VS2017 15.4 9.1.85/7.0.5 x86_64 Python 2.7/Compute 3.0
1.5.0\py27\GPU\cuda91cudnn7avx2 VS2017 15.4 9.1.85/7.0.5 AVX2 Python 2.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.4.0\py36\CPU\avx VS2017 15.4 No AVX Python 3.6
1.4.0\py36\CPU\avx2 VS2017 15.4 No AVX2 Python 3.6
1.4.0\py36\GPU\cuda91cudnn7avx2 VS2017 15.4 9.1.85/7.0.5 AVX2 Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.3.0\py36\CPU\avx VS2015 Update 3 No AVX Python 3.6
1.3.0\py36\CPU\avx2 VS2015 Update 3 No AVX2 Python 3.6
1.3.0\py36\GPU\cuda8cudnn6avx2 VS2015 Update 3 8.0.61.2/6.0.21 AVX2 Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1
1.2.1\py36\CPU\avx VS2015 Update 3 No AVX Python 3.6
1.2.1\py36\CPU\avx2 VS2015 Update 3 No AVX2 Python 3.6
1.2.1\py36\GPU\cuda8cudnn6avx2 VS2015 Update 3 8.0.61.2/6.0.21 AVX2 Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1
1.1.0\py36\CPU\avx VS2015 Update 3 No AVX Python 3.6
1.1.0\py36\CPU\avx2 VS2015 Update 3 No AVX2 Python 3.6
1.1.0\py36\GPU\cuda8cudnn6avx2 VS2015 Update 3 8.0.61.2/6.0.21 AVX2 Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1
1.0.0\py36\CPU\sse2 VS2015 Update 3 No x86_64 Python 3.6
1.0.0\py36\CPU\avx VS2015 Update 3 No AVX Python 3.6
1.0.0\py36\CPU\avx2 VS2015 Update 3 No AVX2 Python 3.6
1.0.0\py36\GPU\cuda8cudnn51sse2 VS2015 Update 3 8.0.61.2/5.1.10 x86_64 Python 3.6/Compute 3.0
1.0.0\py36\GPU\cuda8cudnn51avx2 VS2015 Update 3 8.0.61.2/5.1.10 AVX2 Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1
0.12.0\py35\CPU\avx VS2015 Update 3 No AVX Python 3.5
0.12.0\py35\CPU\avx2 VS2015 Update 3 No AVX2 Python 3.5
0.12.0\py35\GPU\cuda8cudnn51avx2 VS2015 Update 3 8.0.61.2/5.1.10 AVX2 Python 3.5/Compute 3.0,3.5,5.0,5.2,6.1

找到对应的.whl文件
在这里插入图片描述
下载该文件,我用google浏览器下载一直显示无法访问
在这里插入图片描述
后来选用Edge浏览器打开就好啦,直接就下载成功了。
此处放上tensorflow-1.12.0-cp36-cp36m-win_amd64.whl的下载链接:
链接:https://pan.baidu.com/s/1CvKUtmM1zHyJyJk87eFEUA
提取码:o85f
然后用activate 进入自己创建的虚拟环境
在这里插入图片描述
运行pip install tensorflow-1.12.0-cp36-cp36m-win_amd64.whl命令安装
在这里插入图片描述
最后用conda list命令看安装了那些包
在这里插入图片描述
然后再次运行代码,就不会报AVX2的错误啦
在这里插入图片描述

  • 参考链接:https://blog.csdn.net/beyond9305/article/details/95896135
  • https://www.jb51.net/article/179405.htm
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/139439.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • hasOwnProperty方法用法简介

    hasOwnProperty方法用法简介hasOwnProperty表示是否有自己的属性。这个方法会查找一个对象是否有某个属性,但是不会去查找它的原型链。▍示例varobj={a:1,fn:function(){},c:{d:5}};console.log(obj.hasOwnProperty(‘a’));//truecons…

    2025年8月22日
    9
  • pmp证书(职称证书丢失补办流程)

    前言OpenSSL中的概念很多,网上的文档也非常的多,在这里做一下总结,首先明确以下内容。Https访问完整流程1)客户端发起一个https请求,连接到服务器的443端口。2)服务端把自己的信息以数字证书的形式返回给客户端(证书内容有密钥公钥,网站地址,证书颁发机构,失效日期等)。证书中有一个公钥来加密信息,私钥由服务器持有。3)验证证书的合法性客户端收到服务器的响应后会先验证证书的合法性(证书中包含的地址与正在访问的地址是否一致,证书是否过期)。4)生成随机密码(RSA签名)如果验

    2022年4月18日
    126
  • Boltzmann/Softmax Exploration Strategy[通俗易懂]

    Boltzmann/Softmax Exploration Strategy[通俗易懂]Boltzmann/SoftmaxExplorationStrategy玻尔兹曼探索策略转自:Google图书《TheLogicofAdaptiveBehavior》

    2022年7月12日
    46
  • ASMM与AMM「建议收藏」

    ASMM与AMM「建议收藏」ASMM(AutomaticSharedMemoryManagement,自动共享内存管理)是Oracle10g引入的概念。通过使用ASMM,就不需要手工设置相关内存组件的大小,而只为SGA设置一个总的大小,Oracle的MMAN进程(MemoryManagerProcess,内存管理进程)会随着时间推移,根据系统负载的变化和内存需要,自动调整SGA中各个组件的内存大小。ASMM的…

    2022年5月2日
    86
  • SpringBoot框架_skynet框架详解

    SpringBoot框架_skynet框架详解SpringBoot框架详解1.SpringBoot概述1.1springboot简介1.2SpringBoot特点1.3Spring官网解读2.SpringBoot入门2.1系统要求2.2创建项目2.3引入依赖2.4创建测试2.5测试验证3.SpringBoot配置原理3.1SpringBoot特点3.2容器功能3.3自动配置原理入门3.4开发小技巧1.SpringBoot概述1.1springboot简介springboot之所以能使用广泛也基于微服务分布式的的崛

    2022年8月21日
    11
  • Oracle11g安装详细步骤(图文教程)

    Oracle11g安装详细步骤(图文教程)Oracle11g是J2EE初学者必学的数据库之一,下面就给大家介绍一下Oracle11g数据库的详细安装步骤。第一步:打开Oracle中文官网下载Oracle11g打开Oracle中文官网点击导航中的下载,找到数据库下载链接打开链接后,选择同意协议选项,并在下方找到Oracle11g的下载列表选择对应的版本进行下载,需要将File1和File2两个文件都下载下来第二步:解压文件,以

    2022年7月25日
    14

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号