JVM内存分配担保机制[通俗易懂]

JVM内存分配担保机制[通俗易懂]                  JVM内存分配担保机制                       转自:https://cloud.tencent.com/developer/article/1082730 在现实社会中,借款会指定担保人,就是当借款人还不起钱,就由担保人来还钱。在JVM的内存分配…

大家好,又见面了,我是你们的朋友全栈君。

                                    JVM内存分配担保机制

                                             转自:https://cloud.tencent.com/developer/article/1082730

 

在现实社会中,借款会指定担保人,就是当借款人还不起钱,就由担保人来还钱。

在JVM的内存分配时,也有这样的内存分配担保机制。就是当在新生代无法分配内存的时候,把新生代的对象转移到老生代,然后把新对象放入腾空的新生代。

现在假设,我们的新生代分为三个区域,分别为eden space,from space和to space。

现在是尝试分配三个2MB的对象和一个4MB的对象,然后我们通过JVM参数 -Xms20M、-Xmx20M、-Xmn10M 把Java堆大小设置为20MB,不可扩展。

其中10M分配给新生代,另外10M分配给老生代。

然后我们通过-XX:SurvivorRatio=8来分配新生代各区的比例,设置为8,表示eden与一个survivor区的空间比例为8:1。

JVM内存分配担保机制[通俗易懂]

图1 新生代内存分配

JVM参数配置:

-Xms20M -Xmx20M -Xmn10M -XX:+PrintGCDetails -XX:SurvivorRatio=8 –XX:+UseSerialGC

这里我们先手动指定垃圾收集器为客户端模式下的Serial+Serial Old的收集器组合进行内存回收。

由于不同的收集器的收集机制不同,为了呈现出内存分配的担保效果,我们这里需要手动指定为Serial+Serial Old模式。

另外担保机制在JDK1.5以及之前版本中默认是关闭的,需要通过HandlePromotionFailure手动指定,JDK1.6之后就默认开启。这里我们使用的是JDK1.8,所以不用再手动去开启担保机制。

下面我们新建四个byte数组,前三个分别为2MB大小的内存分配,第四个是4MB的内存分配。代码如下:

JVM内存分配担保机制[通俗易懂]

然后运行程序,看看GC日志:

[GC (Allocation Failure) [DefNew: 7836K->472K(9216K), 0.0120087 secs] 7836K->6616K(19456K), 0.0123203 secs] [Times: user=0.01 sys=0.01, real=0.01 secs]

Heap

def new generation total 9216K, used 4732K [0x00000007bec00000, 0x00000007bf600000, 0x00000007bf600000)

eden space 8192K, 52% used [0x00000007bec00000, 0x00000007bf0290f0, 0x00000007bf400000)

from space 1024K, 46% used [0x00000007bf500000, 0x00000007bf576018, 0x00000007bf600000)

to space 1024K, 0% used [0x00000007bf400000, 0x00000007bf400000, 0x00000007bf500000)

tenured generation total 10240K, used 6144K [0x00000007bf600000, 0x00000007c0000000, 0x00000007c0000000)

the space 10240K, 60% used [0x00000007bf600000, 0x00000007bfc00030, 0x00000007bfc00200, 0x00000007c0000000)

Metaspace used 3160K, capacity 4494K, committed 4864K, reserved 1056768K

class space used 341K, capacity 386K, committed 512K, reserved 1048576K

通过GC日志我们发现在分配allocation4的时候,发生了一次Minor GC,让新生代从7836K变为了472K,但是你发现整个堆的占用并没有多少变化。这是因为前面三个2MB的对象都还存活着,所以回收器并没有找到可回收的对象。但为什么会出现这次GC呢?

JVM内存分配担保机制[通俗易懂]

图2 正常流程把前三个对象放入了新生代Eden区

如果你算一笔账就知道了,前面三个对象2MB+2MB+2MB=6MB

虚拟机分配内存优先会分配到新生代的eden space,通过图1我们知道新生代可用内存一共只有9216KB,现在新生代已经被用去了6MB,还剩下9216KB-6144KB=3072KB,然而第四个对象是4MB,显然在新生代已经装不下了。

JVM内存分配担保机制[通俗易懂]

图3 第四个对象此时无法放入Eden区

于是发生了一次Minor GC!

而且本次GC期间,虚拟机发现eden space的三个对象(6MB)又无法全部放入Survivor空间(Survivor可用内存只有1MB)。

这时候该怎么办呢?第四个对象还要不要分配呢?

此时,JVM就启动了内存分配的担保机制,把这6MB的三个对象直接转移到了老年代。

此时就把新生代的空间腾出来了,然后把第四个对象(4MB)放入了Eden区中,所以你看到的结果是4096/8192=0.5,也就是约50%:

eden space 8192K, 52% used [0x00000007bec00000, 0x00000007bf0290f0, 0x00000007bf400000)

老年代则被占用了6MB,也就是前三个对象,1024*2*3=6144KB,6144KB/10240KB=0.6也就是60%:

the space 10240K, 60% used [0x00000007bf600000, 0x00000007bfc00030, 0x00000007bfc00200, 0x00000007c0000000)

JVM内存分配担保机制[通俗易懂]

图4:担保后,allocation4放入到新生代eden区

JVM内存分配担保机制[通俗易懂]

图5:担保后,之前在新生代的三个对象转移到了老生代

服务端模式下的担保机制实现

上面我们演示的在客户端模式(Serial+Serial Old)的场景下的结果,接下来我们使用服务端模式(Parallel Scavenge+Serial Old的组合)来看看担保机制的实现。

修改GC组合为:-XX:+UseParallelGC

然后我们运行程序看看GC日志。

  • 第四个对象是4MB的情况下:

[GC (Allocation Failure) [PSYoungGen: 6156K->592K(9216K)] 6156K->4696K(19456K), 0.0032059 secs] [Times: user=0.01 sys=0.01, real=0.01 secs]

Heap

PSYoungGen total 9216K, used 7057K [0x00000007bf600000, 0x00000007c0000000, 0x00000007c0000000)

eden space 8192K, 78% used [0x00000007bf600000,0x00000007bfc505f8,0x00000007bfe00000)

from space 1024K, 57% used [0x00000007bfe00000,0x00000007bfe94010,0x00000007bff00000)

to space 1024K, 0% used [0x00000007bff00000,0x00000007bff00000,0x00000007c0000000)

ParOldGen total 10240K, used 4104K [0x00000007bec00000, 0x00000007bf600000, 0x00000007bf600000)

object space 10240K, 40% used [0x00000007bec00000,0x00000007bf002020,0x00000007bf600000)

Metaspace used 3299K, capacity 4494K, committed 4864K, reserved 1056768K

class space used 357K, capacity 386K, committed 512K, reserved 1048576K

  • 第四个对象是3MB的情况下:

[GC (Allocation Failure) [PSYoungGen: 8192K->544K(9216K)] 8192K->6688K(19456K), 0.0052943 secs] [Times: user=0.01 sys=0.00, real=0.00 secs]

[Full GC (Ergonomics) [PSYoungGen: 544K->0K(9216K)] [ParOldGen: 6144K->6627K(10240K)] 6688K->6627K(19456K), [Metaspace: 3286K->3286K(1056768K)], 0.0063048 secs] [Times: user=0.01 sys=0.00, real=0.01 secs]

Heap

PSYoungGen total 9216K, used 3238K [0x00000007bf600000, 0x00000007c0000000, 0x00000007c0000000)

eden space 8192K, 39% used [0x00000007bf600000,0x00000007bf929918,0x00000007bfe00000)

from space 1024K, 0% used [0x00000007bfe00000,0x00000007bfe00000,0x00000007bff00000)

to space 1024K, 0% used [0x00000007bff00000,0x00000007bff00000,0x00000007c0000000)

ParOldGen total 10240K, used 6627K [0x00000007bec00000, 0x00000007bf600000, 0x00000007bf600000)

object space 10240K, 64% used [0x00000007bec00000,0x00000007bf278f70,0x00000007bf600000)

Metaspace used 3294K, capacity 4494K, committed 4864K, reserved 1056768K

class space used 356K, capacity 386K, committed 512K, reserved 1048576K

发现当我们使用Server模式下的ParallelGC收集器组合(Parallel Scavenge+Serial Old的组合)下,担保机制的实现和之前的Client模式下(SerialGC收集器组合)有所变化。在GC前还会进行一次判断,如果要分配的内存>=Eden区大小的一半,那么会直接把要分配的内存放入老年代中。否则才会进入担保机制。

这里我们的第四个对象是4MB的时候,也就是(1024KB*4)/8192KB=0.5,刚好一半,于是就这第四个对象分配到了老年代。

第二次,我们把第四个对象由4MB,改为3MB,此时3MB/8192KB=0.37,显然不到一半,此时发现3MB还是无法放入,那么就执行担保机制,把前三个对象转移到老生代,然后把第四个对象(3MB)放入eden区。

总结

内存分配是在JVM在内存分配的时候,新生代内存不足时,把新生代的存活的对象搬到老生代,然后新生代腾出来的空间用于为分配给最新的对象。这里老生代是担保人。在不同的GC机制下,也就是不同垃圾回收器组合下,担保机制也略有不同。在Serial+Serial Old的情况下,发现放不下就直接启动担保机制;在Parallel Scavenge+Serial Old的情况下,却是先要去判断一下要分配的内存是不是>=Eden区大小的一半,如果是那么直接把该对象放入老生代,否则才会启动担保机制。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/139941.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 小草 客户端 android,小草app安卓版入口

    小草 客户端 android,小草app安卓版入口这里小编为大家提供一个非常不错的线上的看剧软件哦,这里每天都会更新一些市面上比较火爆的各种视频资源,而且更新的速度也是十分的快捷的,无需任何的花费,的大家就可以轻松的在线来观看了。整个平台为大家提供的各种服务也是十分的优质的,线上还有专业的客服人员在线为大家提供更加优质的服务哦。小草app安卓版入口的特色:1、线上的所有的视频资源内容都是有平台专业的人士为大家进行审核的,保证都是正版的内容哦;2、…

    2022年6月15日
    230
  • 顺丰科技QT面试题「建议收藏」

    顺丰科技QT面试题「建议收藏」自定义控件:应该做过吧?能举几个例子吗?还有其他的吗?你觉得自定义控件的方法主要是哪些?答:从外观设计上:QSS、继承绘制函数重绘、继承QStyle相关类重绘、组合拼装等等从功能行为上:重写事件函数、添加或者修改信号和槽等等QSS:QSS平时使用的多吗?能举几个例子吗?都是如何使用,能说说吗?答:1.将QSS统一写在一个文件中,通过程序给主窗口加载;2.写成一个字符串中,通过程序给主窗口加载;3.需要使用的地方,写一个字符串,加载给对象;4.QTDesigner中填写;事件机制:

    2022年6月25日
    35
  • php sigpipe,Python的SIGPIPE信号「建议收藏」

    php sigpipe,Python的SIGPIPE信号「建议收藏」Haveyoueverseenasocket.error:[Errno32]BrokenpipemessagewhenrunningaPythonWebserverandwonderedwhatthatmeans?Theruleisthatwhenaprocesstriestowritetoasocketthathasalre…

    2022年5月30日
    32
  • Scrapy 爬虫框架[通俗易懂]

    Scrapy 爬虫框架[通俗易懂]Scrapy爬虫框架1.概述​ Scrapy是一个可以爬取网站数据,为了提取结构性数据而编写的开源框架。Scrapy的用途非常广泛,不仅可以应用到网络爬虫中,还可以用于数据挖掘、数据监测以及自动化测试等。Scrapy是基于Twisted的异步处理框架,架构清晰、可扩展性强,可以灵活完成各种需求。​ 在Scrapy的工作流程中主要包括以下几个部分:​ §ScrapyEngine(框架的引擎):用于处理整个系统的数据流,触发各种事件,是整个框架的核心。​ §Scheduler(调度器

    2025年7月12日
    4
  • 简述SpringAOP的实现原理_spring AOP

    简述SpringAOP的实现原理_spring AOPAOP用Spring需要导入包<dependency> <groupId>org.aspectj</groupId> <artifactId>aspectjweaver</artifactId> <version>1.9.4</version> </dependency>方式一:使用Spring接口编写javapackage com.kuang.log;

    2022年8月8日
    7
  • pandas astype()错误[通俗易懂]

    pandas astype()错误[通俗易懂]由于数据出现错误DataError:Nonumerictypestoaggregate改正以后才认识到astype的重要性。Top15[‘populations’]=Top15[‘EnergySupply’].div(Top15[‘EnergySupplyperCapita’]).astype(float)df_mean=((df.set_ind…

    2022年5月15日
    51

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号