机器学习-支持向量回归

机器学习-支持向量回归一,介绍支持向量回归(SVR)是期望找到一条线,能让所有的点都尽量逼近这条线,从而对数据做出预测。SVR的基本思路和SVM中是一样的,在ϵ−SVR需要解决如下的优化问题:                                       其回归图形如下:           …

大家好,又见面了,我是你们的朋友全栈君。

一,介绍

支持向量回归(SVR)是期望找到一条线,能让所有的点都尽量逼近这条线,从而对数据做出预测。

SVR的基本思路和SVM中是一样的,在ϵ−SVR需要解决如下的优化问题:

                                                                            机器学习-支持向量回归

其回归图形如下:

                                          机器学习-支持向量回归

如上左图可知,在灰色区域,是正确回归的点。而还有一部分变量落在区域外,我们采用类似SVM中使用的方法,引入松弛因子,采取软边界的方法,如上右图。

二,拉格朗日对偶求解

类似与SVM,在SVR中,引入拉格朗日乘子,获得拉格朗日函数,再求解更加容易计算。拉格朗日函数如下:

机器学习-支持向量回归机器学习-支持向量回归

分别对w,b,机器学习-支持向量回归机器学习-支持向量回归求导得:

                                                              机器学习-支持向量回归

转化为对偶问题:

                                       机器学习-支持向量回归

                                       机器学习-支持向量回归

将w代入后获得:

                                                                  机器学习-支持向量回归

三,Python代码:

import numpy as np
from sklearn.svm import SVR
import matplotlib.pyplot as plt

# 随机产生样本点
X = np.sort(5 * np.random.rand(40, 1), axis=0)  #产生40组数据,每组一个数据,axis=0决定按列排列,=1表示行排列
y = np.sin(X).ravel()   #np.sin()输出的是列,和X对应,ravel表示转换成行

# 产生噪声
y[::5] += 3 * (0.5 - np.random.rand(8))

# SVC拟合
def svcrbfModel():
    svr_rbf10 = SVR(kernel='rbf',C=100, gamma=10.0)
    svr_rbf1 = SVR(kernel='rbf', C=100, gamma=0.1)
    y_rbf10 = svr_rbf10.fit(X, y).predict(X)
    y_rbf1 = svr_rbf1.fit(X, y).predict(X)
    return  y_rbf10,y_rbf1

#画图
def showPlot(y_rbf10,y_rbf1):
    lw = 2 #line width
    plt.scatter(X, y, color='darkorange', label='data')
    plt.hold('on')
    plt.plot(X, y_rbf10, color='navy', lw=lw, label='RBF gamma=10.0')
    plt.plot(X, y_rbf1, color='c', lw=lw, label='RBF gamma=1.0')
    plt.xlabel('data')
    plt.ylabel('target')
    plt.title('Support Vector Regression')
    plt.legend()
    plt.show()

if __name__ == '__main__':
    y_rbf10, y_rbf1= svcrbfModel()
    showPlot(y_rbf10,y_rbf1)

产生如下结果:

机器学习-支持向量回归

sklearn.svm.SVR参数说明如下:

  • C:惩罚项,float类型,可选参数,默认为1.0,C越大,即对分错样本的惩罚程度越大,因此在训练样本中准确率越高,但是泛化能力降低,也就是对测试数据的分类准确率降低。相反,减小C的话,容许训练样本中有一些误分类错误样本,泛化能力强。对于训练样本带有噪声的情况,一般采用后者,把训练样本集中错误分类的样本作为噪声。
  • kernel:核函数类型,str类型,默认为’rbf’。可选参数为:
    • ‘linear’:线性核函数
    • ‘poly’:多项式核函数
    • ‘rbf’:径像核函数/高斯核
    • ‘sigmod’:sigmod核函数
    • ‘precomputed’:核矩阵
    • precomputed表示自己提前计算好核函数矩阵,这时候算法内部就不再用核函数去计算核矩阵,而是直接用你给的核矩阵,核矩阵需要为n*n的。
  • degree:多项式核函数的阶数,int类型,可选参数,默认为3。这个参数只对多项式核函数有用,是指多项式核函数的阶数n,如果给的核函数参数是其他核函数,则会自动忽略该参数。
  • gamma:核函数系数,float类型,可选参数,默认为auto。只对’rbf’ ,’poly’ ,’sigmod’有效。如果gamma为auto,代表其值为样本特征数的倒数,即1/n_features。
  • coef0:核函数中的独立项,float类型,可选参数,默认为0.0。只有对’poly’ 和,’sigmod’核函数有用,是指其中的参数c。
  • probability:是否启用概率估计,bool类型,可选参数,默认为False,这必须在调用fit()之前启用,并且会fit()方法速度变慢。
  • shrinking:是否采用启发式收缩方式,bool类型,可选参数,默认为True。
  • tol:svm停止训练的误差精度,float类型,可选参数,默认为1e^-3。
  • cache_size:内存大小,float类型,可选参数,默认为200。指定训练所需要的内存,以MB为单位,默认为200MB。
  • class_weight:类别权重,dict类型或str类型,可选参数,默认为None。给每个类别分别设置不同的惩罚参数C,如果没有给,则会给所有类别都给C=1,即前面参数指出的参数C。如果给定参数’balance’,则使用y的值自动调整与输入数据中的类频率成反比的权重。
  • verbose:是否启用详细输出,bool类型,默认为False,此设置利用libsvm中的每个进程运行时设置,如果启用,可能无法在多线程上下文中正常工作。一般情况都设为False,不用管它。
  • max_iter:最大迭代次数,int类型,默认为-1,表示不限制。
  • decision_function_shape:决策函数类型,可选参数’ovo’和’ovr’,默认为’ovr’。’ovo’表示one vs one,’ovr’表示one vs rest。
  • random_state:数据洗牌时的种子值,int类型,可选参数,默认为None。伪随机数发生器的种子,在混洗数据时用于概率估计。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/140014.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • VUE分页出现省略号「建议收藏」

    VUE分页出现省略号「建议收藏」提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档VUE分页出现省略号废话不多说直接上代码calcPageNum(){letpageTotal=Math.ceil(this.total/this.limit);//获取最大页码数letcur=this.currentPage;//获取当前页码数if(pageTotal<7){//判断什么时候正常显示

    2022年10月1日
    2
  • pgsql的端口(oracle数据库)

    netstat-a|grepPGSQL

    2022年4月11日
    51
  • linux复制文件到当前目录并重命名_Linux复制文件到当前文件夹

    linux复制文件到当前目录并重命名_Linux复制文件到当前文件夹./表示当前目录cptest/*.wav./-r递归子目录cp-r绝对路径/文件目标路径cp-r绝对路径/*.wav目标路径copy一个目录下的所有文件以及递归文件到当前文件夹cp-raudios/*./

    2022年8月23日
    7
  • pytorch安装命令「建议收藏」

    pytorch安装命令「建议收藏」转自:https://blog.csdn.net/sunny_580/article/details/78958236pytorch安装命令OS :Linux, PackageManager :conda, Python :2.7, CUDA :7.5Runthiscommand: condainstallpytorchtorchvisioncuda75-c…

    2022年6月24日
    41
  • 使用Sigar包获取操作系统信息[通俗易懂]

    使用Sigar包获取操作系统信息[通俗易懂]项目中的一个需求是获取操作系统的相关信息,可以收集的信息包括:1,CPU信息,包括基本信息(vendor、model、mhz、cacheSize)和统计信息(user、sys、idle、nice、wait)2,文件系统信息,包括Filesystem、Size、Used、Avail、Use%、Type3,事件信息,类似ServiceControlManager4,内存信息

    2025年7月6日
    4
  • I bumped into a girl literally_back and forth

    I bumped into a girl literally_back and forthhttp://acm.hznu.edu.cn/OJ/problem.php?cid=1263&amp;pid=6http://acm.hznu.edu.cn/OJ/problem.php?id=2585题意:每天能往存钱罐加任意实数的钱,每天不能多于起那一天放的钱数。如果某一天的钱数恰好等于那天的特价商品,则可以买,求最后的最大快乐值。题解:显然的贪心:如果第i天买完,准备在第…

    2025年8月12日
    3

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号