Matlab fitrsvm自带支持向量回归[通俗易懂]

Matlab fitrsvm自带支持向量回归[通俗易懂]简介fitrsvm在中低维预测变量数据集上训练或交叉验证支持向量机(SVM)回归模型。fitrsvm支持使用内核函数映射预测变量数据,并支持通过二次编程实现目标函数最小化。要在高维数据集(即包含许多预测变量的数据集)上训练线性SVM回归模型,请改用fitrlinear。用法Mdl=fitrsvm(Tbl,ResponseVarName)返回使用表Tbl中的自变量值和表中对应变量名…

大家好,又见面了,我是你们的朋友全栈君。

简介

Matlab可以使用fitrsvm创建回归支持向量机模型。fitrsvm在中低维预测变量数据集上训练或交叉验证支持向量机(SVM)回归模型。 fitrsvm支持使用内核函数映射预测变量数据,并支持通过二次编程实现目标函数最小化。要在高维数据集(即包含许多预测变量的数据集)上训练线性SVM回归模型,请改用fitrlinear。

关键步骤

步骤一:使用fitrsvm构建(训练)回归模型,模型存储数据、参数值、支持向量和算法实现信息;
步骤二:使用训练的模型可以进行,估计resubstitution预测、预测新数据的值、计算resubstitution损失、计算均方误差或不敏感损失。

(1)估计resubstitution预测:

yfit = resubPredict (mdl)

使用存储在mdl. x中的预测器数据,为训练好的支持向量机回归模型mdl返回一个预测对应值的向量yfit。

输入参数:
mdl -完整的、经过训练的SVM回归模型,指定为fitrsvm返回的回归SVM模型。

输出参数:
yfit -预测数值向量。yfit的长度等于训练数据mdl.NumObservations中的观察次数。

(2)预测新数据

yfit = predict(Mdl,X)

描述
基于训练好的支持向量机回归模型Mdl,返回矩阵X中预测数据的预测对应向量。

输入参数
Mdl – SVM回归模型,由fitrsvm返回。

X -用于生成对应的预测数据

(3)计算resubstitution损失

L = resubLoss (mdl)
L = resubLoss (mdl, name, value)

描述
L = resubLoss(mdl)返回支持向量机回归模型mdl的再替换损失,使用存储在mdl中的训练数据。X和对应值存储在mdl.Y中。

L = resubLoss(mdl,Name,Value)返回重新替换丢失,以及由一个或多个名称、值对参数指定的附加选项。例如,您可以指定损失函数或观测权值。

实例用法

Mdl = fitrsvm(Tbl,ResponseVarName)

返回使用表Tbl中的自变量值和表中对应变量名Tbl.ResponseVarName中的因变量值训练得到回归模型Mdl。

Mdl = fitrsvm(Tbl,formula)

返回使用表Tbl中的预测值训练的完整SVM回归模型。公式是响应的解释模型,也是Tbl中预测变量的子集,用于拟合Mdl。

Mdl = fitrsvm(Tbl,Y)

返回经过训练的SVM回归模型,该模型使用表Tbl中的自变量值和向量Y中的因变量值进行训练。

Mdl = fitrsvm(X,Y)

返回一个完整的,经过训练的SVM回归模型,该模型使用矩阵X中的预测值和向量Y中的响应值进行训练。

Mdl = fitrsvm(___,Name,Value)

返回带有一个或多个名称-值对参数指定的其他选项的SVM回归模型。例如,您可以指定内核功能或训练交叉验证的模型。

例子1-默认参数(线性核函数)

clc
clear all
close all

% 加载数据
load carsmall
rng 'default'  % For reproducibility

% 马力和重量作为自变量,MPG作为因变量
X = [Horsepower,Weight];
Y = MPG;

% 返回一个默认的回归支持向量模型
Mdl = fitrsvm(X,Y)

MdlStd = fitrsvm(X,Y,'Standardize',true)
l = resubLoss(Mdl)
lStd = resubLoss(MdlStd)

例子2-高斯核函数

clc
clear all
close all

% 加载数据
% 使用UCI机器学习存储库中的abalone数据训练支持向量机回归模型
% 下载数据,并将其保存在当前文件夹中,名称为“ abalone.csv”
url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/abalone/abalone.data';
websave('abalone.csv',url);

% 将数据读入表。指定变量名称
varnames = { 
   'Sex'; 'Length'; 'Diameter'; 'Height'; 'Whole_weight';...
    'Shucked_weight'; 'Viscera_weight'; 'Shell_weight'; 'Rings'};
Tbl = readtable('abalone.csv','Filetype','text','ReadVariableNames',false);
Tbl.Properties.VariableNames = varnames;

% 样本数据包含4177个观测值。除性别外,所有预测变量都是连续的,这是一个类别变量,
% 其可能值为“ M”(对于男性),“ F”(对于女性)和“ I”(对于婴儿)。
% 目的是预测abalone的环数(存储在“环”中)并使用物理测量确定其年龄。

rng default  % For reproducibility
Mdl = fitrsvm(Tbl,'Rings','KernelFunction','gaussian','KernelScale','auto',...
    'Standardize',true)

% 使用点表示法显示Mdl的属性。 例如,检查以确认模型是否收敛以及完成了多少次迭代。
conv = Mdl.ConvergenceInfo.Converged
iter = Mdl.NumIterations

例子3-交叉验证和自动优化

clc
clear all
close all

% 加载数据
load carsmall
rng 'default'  % For reproducibility

X = [Horsepower Weight];
Y = MPG;

% 使用5-fold交叉验证对两个SVM回归模型进行交叉验证。 
% 对于这两种模型,请指定以标准化预测变量。 对于其中一个模型,
% 指定使用默认线性核进行训练,而对于另一个模型,则指定使用高斯核。
MdlLin = fitrsvm(X,Y,'Standardize',true,'KFold',5)
MdlGau = fitrsvm(X,Y,'Standardize',true,'KFold',5,'KernelFunction','gaussian')

mseLin = kfoldLoss(MdlLin)
mseGau = kfoldLoss(MdlGau)


% 使用fitrsvm自动优化超参数。通过使用自动超参数优化,找到使交叉验证损失减少五倍的超参数。
rng default
Mdl = fitrsvm(X,Y,'OptimizeHyperparameters','auto',...
    'HyperparameterOptimizationOptions',struct('AcquisitionFunctionName',...
    'expected-improvement-plus'))
% 预测
fit = predict(Mdl,X)
% plot(Y,fit,'.')

Matlab fitrsvm自带支持向量回归[通俗易懂]
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/141016.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • pycharm远程连接服务器及同步

    pycharm远程连接服务器及同步文章目录 pycharm 远程连接服务器及同步 ref 概述实际步骤其他设置注意推荐使用方式 nohup 命令 pycharm 远程连接服务器及同步 refpycharm 连接 ssh 笔记 Pycharm 运行服务器环境设置 python 开发环境的配置 Linux pycharm pyenv 概述用到服务器的地方大概有 建立 ssh 终端连接 一个服务器可以新建一个 sshsession 建立 SFTP 连接同步文件 一个服务器可以新建一个 deployment 建立 ssh 远程环境 一个远程环境可以新建一个 sshin

    2025年9月27日
    4
  • 银行风控模型

    银行风控模型风控催生原因对于银行来说,现今互联网贷款和信用卡办理面临的主要难题是数据和风控。站在银行或金融机构角度,自然而然是想获得更多的信息和数据,但是在收集数据这方面又是比较无力的。加上当下的发展趋势,消费贷以及贷款审批速度都要求快。如何在快的的过程中对客户进行一个全面的审查,得出一个合理的结果呢?如果没有详细的数据对客户进行评估,这势必会提高放贷的风险。风控概述所谓风控,是指多银行贷款资金的…

    2022年6月13日
    40
  • 安装程序遇到错误0x800f0905_程序运行时黑屏退出

    安装程序遇到错误0x800f0905_程序运行时黑屏退出问题属于环境问题,关闭杀毒软件,重新检查计算机环境。

    2022年9月24日
    4
  • 数据同步利器-otter的搭建使用说明「建议收藏」

    数据同步利器-otter的搭建使用说明「建议收藏」一、Otter目前支持了什么1.单向同步,mysql/oracle互相同步2.双向同步,无冲突变更3.文件同步,本地/aranda文件4.双A同步,冲突检测&冲突补救5.数据迁移,中间表/行记录同步导历史表还需要程序实现吗?还在用mysql的主从复制吗?Otter都能为你解决。典型的场景

    2022年6月8日
    96
  • 什么是PV,UV。

    什么是PV,UV。

    2022年1月13日
    55
  • QTreeView 使用

    QTreeView 使用QTreeView结构介绍:树控件的标题QHeaderView,相关用法参考Qt文档。控件使用的model/view框架,QTreeView实现了QAbstractItemView里声明的相关接口,由QAbstractItemModel为控件提供显示数据。自定义数据,通过QStandardItemModel和QTreeView连用,用QStandardItem属性介绍:…

    2022年6月2日
    48

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号