Pytorch实战2:ResNet-18实现Cifar-10图像分类(测试集分类准确率95.170%)[通俗易懂]

Pytorch实战2:ResNet-18实现Cifar-10图像分类(测试集分类准确率95.170%)[通俗易懂]版权说明:此文章为本人原创内容,转载请注明出处,谢谢合作!Pytorch实战2:ResNet-18实现Cifar-10图像分类实验环境:Pytorch0.4.0torchvision0.2.1Python3.6CUDA8+cuDNNv7(可选)Win10+Pycharm整个项目代码:点击这里ResNet-18网络结构:ResN…

大家好,又见面了,我是你们的朋友全栈君。

版权说明:此文章为本人原创内容,转载请注明出处,谢谢合作!


Pytorch实战2:ResNet-18实现Cifar-10图像分类

实验环境:

  1. Pytorch 0.4.0
  2. torchvision 0.2.1
  3. Python 3.6
  4. CUDA8+cuDNN v7 (可选)
  5. Win10+Pycharm

整个项目代码:点击这里

ResNet-18网络结构:

这里写图片描述
ResNet全名Residual Network残差网络。Kaiming He 的《Deep Residual Learning for Image Recognition》获得了CVPR最佳论文。他提出的深度残差网络在2015年可以说是洗刷了图像方面的各大比赛,以绝对优势取得了多个比赛的冠军。而且它在保证网络精度的前提下,将网络的深度达到了152层,后来又进一步加到1000的深度。论文的开篇先是说明了深度网络的好处:特征等级随着网络的加深而变高,网络的表达能力也会大大提高。因此论文中提出了一个问题:是否可以通过叠加网络层数来获得一个更好的网络呢?作者经过实验发现,单纯的把网络叠起来的深层网络的效果反而不如合适层数的较浅的网络效果。因此何恺明等人在普通平原网络的基础上增加了一个shortcut, 构成一个residual block。此时拟合目标就变为F(x),F(x)就是残差:
这里写图片描述!

Pytorch上搭建ResNet-18:

'''ResNet-18 Image classfication for cifar-10 with PyTorch Author 'Sun-qian'. '''
import torch
import torch.nn as nn
import torch.nn.functional as F

class ResidualBlock(nn.Module):
    def __init__(self, inchannel, outchannel, stride=1):
        super(ResidualBlock, self).__init__()
        self.left = nn.Sequential(
            nn.Conv2d(inchannel, outchannel, kernel_size=3, stride=stride, padding=1, bias=False),
            nn.BatchNorm2d(outchannel),
            nn.ReLU(inplace=True),
            nn.Conv2d(outchannel, outchannel, kernel_size=3, stride=1, padding=1, bias=False),
            nn.BatchNorm2d(outchannel)
        )
        self.shortcut = nn.Sequential()
        if stride != 1 or inchannel != outchannel:
            self.shortcut = nn.Sequential(
                nn.Conv2d(inchannel, outchannel, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(outchannel)
            )

    def forward(self, x):
        out = self.left(x)
        out += self.shortcut(x)
        out = F.relu(out)
        return out

class ResNet(nn.Module):
    def __init__(self, ResidualBlock, num_classes=10):
        super(ResNet, self).__init__()
        self.inchannel = 64
        self.conv1 = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(),
        )
        self.layer1 = self.make_layer(ResidualBlock, 64,  2, stride=1)
        self.layer2 = self.make_layer(ResidualBlock, 128, 2, stride=2)
        self.layer3 = self.make_layer(ResidualBlock, 256, 2, stride=2)
        self.layer4 = self.make_layer(ResidualBlock, 512, 2, stride=2)
        self.fc = nn.Linear(512, num_classes)

    def make_layer(self, block, channels, num_blocks, stride):
        strides = [stride] + [1] * (num_blocks - 1)   #strides=[1,1]
        layers = []
        for stride in strides:
            layers.append(block(self.inchannel, channels, stride))
            self.inchannel = channels
        return nn.Sequential(*layers)

    def forward(self, x):
        out = self.conv1(x)
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.layer4(out)
        out = F.avg_pool2d(out, 4)
        out = out.view(out.size(0), -1)
        out = self.fc(out)
        return out


def ResNet18():

    return ResNet(ResidualBlock)

Pytorch上训练:

所选数据集为Cifar-10,该数据集共有60000张带标签的彩色图像,这些图像尺寸32*32,分为10个类,每类6000张图。这里面有50000张用于训练,每个类5000张,另外10000用于测试,每个类1000张。训练时人为修改学习率,当epoch:[1-135] ,lr=0.1;epoch:[136-185], lr=0.01;epoch:[186-240] ,lr=0.001。训练代码如下:

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import argparse
from resnet import ResNet18
import os

# 定义是否使用GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 参数设置,使得我们能够手动输入命令行参数,就是让风格变得和Linux命令行差不多
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
parser.add_argument('--outf', default='./model/', help='folder to output images and model checkpoints') #输出结果保存路径
args = parser.parse_args()

# 超参数设置
EPOCH = 135   #遍历数据集次数
pre_epoch = 0  # 定义已经遍历数据集的次数
BATCH_SIZE = 128      #批处理尺寸(batch_size)
LR = 0.01        #学习率

# 准备数据集并预处理
transform_train = transforms.Compose([
    transforms.RandomCrop(32, padding=4),  #先四周填充0,在吧图像随机裁剪成32*32
    transforms.RandomHorizontalFlip(),  #图像一半的概率翻转,一半的概率不翻转
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), #R,G,B每层的归一化用到的均值和方差
])

transform_test = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])

trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train) #训练数据集
trainloader = torch.utils.data.DataLoader(trainset, batch_size=BATCH_SIZE, shuffle=True, num_workers=2)   #生成一个个batch进行批训练,组成batch的时候顺序打乱取

testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)
# Cifar-10的标签
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

# 模型定义-ResNet
net = ResNet18().to(device)

# 定义损失函数和优化方式
criterion = nn.CrossEntropyLoss()  #损失函数为交叉熵,多用于多分类问题
optimizer = optim.SGD(net.parameters(), lr=LR, momentum=0.9, weight_decay=5e-4) #优化方式为mini-batch momentum-SGD,并采用L2正则化(权重衰减)

# 训练
if __name__ == "__main__":
	if not os.path.exists(args.outf):
		os.makedirs(args.outf)
    best_acc = 85  #2 初始化best test accuracy
    print("Start Training, Resnet-18!")  # 定义遍历数据集的次数
    with open("acc.txt", "w") as f:
        with open("log.txt", "w")as f2:
            for epoch in range(pre_epoch, EPOCH):
                print('\nEpoch: %d' % (epoch + 1))
                net.train()
                sum_loss = 0.0
                correct = 0.0
                total = 0.0
                for i, data in enumerate(trainloader, 0):
                    # 准备数据
                    length = len(trainloader)
                    inputs, labels = data
                    inputs, labels = inputs.to(device), labels.to(device)
                    optimizer.zero_grad()

                    # forward + backward
                    outputs = net(inputs)
                    loss = criterion(outputs, labels)
                    loss.backward()
                    optimizer.step()

                    # 每训练1个batch打印一次loss和准确率
                    sum_loss += loss.item()
                    _, predicted = torch.max(outputs.data, 1)
                    total += labels.size(0)
                    correct += predicted.eq(labels.data).cpu().sum()
                    print('[epoch:%d, iter:%d] Loss: %.03f | Acc: %.3f%% '
                          % (epoch + 1, (i + 1 + epoch * length), sum_loss / (i + 1), 100. * correct / total))
                    f2.write('%03d %05d |Loss: %.03f | Acc: %.3f%% '
                          % (epoch + 1, (i + 1 + epoch * length), sum_loss / (i + 1), 100. * correct / total))
                    f2.write('\n')
                    f2.flush()

                # 每训练完一个epoch测试一下准确率
                print("Waiting Test!")
                with torch.no_grad():
                    correct = 0
                    total = 0
                    for data in testloader:
                        net.eval()
                        images, labels = data
                        images, labels = images.to(device), labels.to(device)
                        outputs = net(images)
                        # 取得分最高的那个类 (outputs.data的索引号)
                        _, predicted = torch.max(outputs.data, 1)
                        total += labels.size(0)
                        correct += (predicted == labels).sum()
                    print('测试分类准确率为:%.3f%%' % (100 * correct / total))
                    acc = 100. * correct / total
                    # 将每次测试结果实时写入acc.txt文件中
                    print('Saving model......')
                    torch.save(net.state_dict(), '%s/net_%03d.pth' % (args.outf, epoch + 1))
                    f.write("EPOCH=%03d,Accuracy= %.3f%%" % (epoch + 1, acc))
                    f.write('\n')
                    f.flush()
                    # 记录最佳测试分类准确率并写入best_acc.txt文件中
                    if acc > best_acc:
                        f3 = open("best_acc.txt", "w")
                        f3.write("EPOCH=%d,best_acc= %.3f%%" % (epoch + 1, acc))
                        f3.close()
                        best_acc = acc
            print("Training Finished, TotalEPOCH=%d" % EPOCH)


实验结果:best_acc= 95.170%

这里写图片描述
(损失图是matlab画的,用保存下来的txt日志)

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/141094.html原文链接:https://javaforall.net

(1)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 如何从jdbc中获取数据库建表语句信息(表字段名称/表字段类型/表字段注释信息/表字段长度等等)

    如何从jdbc中获取数据库建表语句信息(表字段名称/表字段类型/表字段注释信息/表字段长度等等)*如何从jdbc中获取数据库建表语句信息(表字段名称/表字段类型/表字段注释信息/表字段长度等等)*1,表字段名称*2,表字段类型*3,表字段注释信息这里介绍3种方式,如下:第一种方式:执行sql语句获取select*fromuser_pop_infowhere1=2第二种方式:执行sql语句获取showcreatetableuser_pop_info第二种方式:直接从jdbc数据库连接Connection实例中获取三种方式获取的数据有一些区…

    2025年10月2日
    3
  • 一般人到底要不要学Python_Python值得学吗

    一般人到底要不要学Python_Python值得学吗前言本人纯屌丝一枚,在学python之前对电脑的认知也就只限于上个网,玩个办公软件。这里不能跑题,我为啥说自学python,一般人我还是劝你算了吧。因为我就是那个一般人。基础真的很简单,是个人稍微认点真都能懂,这就是好多人说的python简单、易懂、好学,然后就是一顿浮夸的言论,误导那些小白,再然后那些小白也就跟着浮夸。这里我就给那些轻浮的人泼一桶冷水,懂跟学会是一码事吗?先来说哈python这个就业哈,我现在生活在祖国的肚皮上–成都,(嗯,有想了解川西迷你小环线的在下面留言哦),下面亲身经历,我喃,

    2025年8月30日
    7
  • 盘点开发中那些常用的MySQL优化

    盘点开发中那些常用的MySQL优化

    2022年2月15日
    32
  • csdn自动签到python脚本

    csdn自动签到python脚本

    2021年10月3日
    49
  • 什么是pyc文件

    什么是pyc文件其实很简单,用python-mpy_compilefile.pypython-mpy_compile/root/src/{file1,file2}.py编译成pyc文件。也可以写份脚本来做这事:Code: importpy_compile  py_compile.compile(‘path’)//path是包括.py文件名的路径 用python…

    2022年6月17日
    40
  • 因果图分析法[通俗易懂]

    因果图分析法[通俗易懂]目录一、因果图法1.理解二、因果图需要掌握的基本知识1.关系2.约束3.输出条件的约束4.输出条件的约束5.原因和结果表示6.中间节点三、因果图设计测试用例的步骤四、优缺点1.优点2.缺点五、实例1.案例2.分析案例六、为什么要有中间节点1.无中间节点因果图2.有中间节点因果图一、因果图法1.理解因果图是一种简化了的逻辑图,能直观的表明程序输入条件(原因)和输出动作(结果)之间的相互关系; 因果图法是借助图形来设计测试

    2022年8月14日
    5

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号