Pytorch实战2:ResNet-18实现Cifar-10图像分类(测试集分类准确率95.170%)[通俗易懂]

Pytorch实战2:ResNet-18实现Cifar-10图像分类(测试集分类准确率95.170%)[通俗易懂]版权说明:此文章为本人原创内容,转载请注明出处,谢谢合作!Pytorch实战2:ResNet-18实现Cifar-10图像分类实验环境:Pytorch0.4.0torchvision0.2.1Python3.6CUDA8+cuDNNv7(可选)Win10+Pycharm整个项目代码:点击这里ResNet-18网络结构:ResN…

大家好,又见面了,我是你们的朋友全栈君。

版权说明:此文章为本人原创内容,转载请注明出处,谢谢合作!


Pytorch实战2:ResNet-18实现Cifar-10图像分类

实验环境:

  1. Pytorch 0.4.0
  2. torchvision 0.2.1
  3. Python 3.6
  4. CUDA8+cuDNN v7 (可选)
  5. Win10+Pycharm

整个项目代码:点击这里

ResNet-18网络结构:

这里写图片描述
ResNet全名Residual Network残差网络。Kaiming He 的《Deep Residual Learning for Image Recognition》获得了CVPR最佳论文。他提出的深度残差网络在2015年可以说是洗刷了图像方面的各大比赛,以绝对优势取得了多个比赛的冠军。而且它在保证网络精度的前提下,将网络的深度达到了152层,后来又进一步加到1000的深度。论文的开篇先是说明了深度网络的好处:特征等级随着网络的加深而变高,网络的表达能力也会大大提高。因此论文中提出了一个问题:是否可以通过叠加网络层数来获得一个更好的网络呢?作者经过实验发现,单纯的把网络叠起来的深层网络的效果反而不如合适层数的较浅的网络效果。因此何恺明等人在普通平原网络的基础上增加了一个shortcut, 构成一个residual block。此时拟合目标就变为F(x),F(x)就是残差:
这里写图片描述!

Pytorch上搭建ResNet-18:

'''ResNet-18 Image classfication for cifar-10 with PyTorch Author 'Sun-qian'. '''
import torch
import torch.nn as nn
import torch.nn.functional as F

class ResidualBlock(nn.Module):
    def __init__(self, inchannel, outchannel, stride=1):
        super(ResidualBlock, self).__init__()
        self.left = nn.Sequential(
            nn.Conv2d(inchannel, outchannel, kernel_size=3, stride=stride, padding=1, bias=False),
            nn.BatchNorm2d(outchannel),
            nn.ReLU(inplace=True),
            nn.Conv2d(outchannel, outchannel, kernel_size=3, stride=1, padding=1, bias=False),
            nn.BatchNorm2d(outchannel)
        )
        self.shortcut = nn.Sequential()
        if stride != 1 or inchannel != outchannel:
            self.shortcut = nn.Sequential(
                nn.Conv2d(inchannel, outchannel, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(outchannel)
            )

    def forward(self, x):
        out = self.left(x)
        out += self.shortcut(x)
        out = F.relu(out)
        return out

class ResNet(nn.Module):
    def __init__(self, ResidualBlock, num_classes=10):
        super(ResNet, self).__init__()
        self.inchannel = 64
        self.conv1 = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(),
        )
        self.layer1 = self.make_layer(ResidualBlock, 64,  2, stride=1)
        self.layer2 = self.make_layer(ResidualBlock, 128, 2, stride=2)
        self.layer3 = self.make_layer(ResidualBlock, 256, 2, stride=2)
        self.layer4 = self.make_layer(ResidualBlock, 512, 2, stride=2)
        self.fc = nn.Linear(512, num_classes)

    def make_layer(self, block, channels, num_blocks, stride):
        strides = [stride] + [1] * (num_blocks - 1)   #strides=[1,1]
        layers = []
        for stride in strides:
            layers.append(block(self.inchannel, channels, stride))
            self.inchannel = channels
        return nn.Sequential(*layers)

    def forward(self, x):
        out = self.conv1(x)
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.layer4(out)
        out = F.avg_pool2d(out, 4)
        out = out.view(out.size(0), -1)
        out = self.fc(out)
        return out


def ResNet18():

    return ResNet(ResidualBlock)

Pytorch上训练:

所选数据集为Cifar-10,该数据集共有60000张带标签的彩色图像,这些图像尺寸32*32,分为10个类,每类6000张图。这里面有50000张用于训练,每个类5000张,另外10000用于测试,每个类1000张。训练时人为修改学习率,当epoch:[1-135] ,lr=0.1;epoch:[136-185], lr=0.01;epoch:[186-240] ,lr=0.001。训练代码如下:

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import argparse
from resnet import ResNet18
import os

# 定义是否使用GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 参数设置,使得我们能够手动输入命令行参数,就是让风格变得和Linux命令行差不多
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
parser.add_argument('--outf', default='./model/', help='folder to output images and model checkpoints') #输出结果保存路径
args = parser.parse_args()

# 超参数设置
EPOCH = 135   #遍历数据集次数
pre_epoch = 0  # 定义已经遍历数据集的次数
BATCH_SIZE = 128      #批处理尺寸(batch_size)
LR = 0.01        #学习率

# 准备数据集并预处理
transform_train = transforms.Compose([
    transforms.RandomCrop(32, padding=4),  #先四周填充0,在吧图像随机裁剪成32*32
    transforms.RandomHorizontalFlip(),  #图像一半的概率翻转,一半的概率不翻转
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), #R,G,B每层的归一化用到的均值和方差
])

transform_test = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])

trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train) #训练数据集
trainloader = torch.utils.data.DataLoader(trainset, batch_size=BATCH_SIZE, shuffle=True, num_workers=2)   #生成一个个batch进行批训练,组成batch的时候顺序打乱取

testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)
# Cifar-10的标签
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

# 模型定义-ResNet
net = ResNet18().to(device)

# 定义损失函数和优化方式
criterion = nn.CrossEntropyLoss()  #损失函数为交叉熵,多用于多分类问题
optimizer = optim.SGD(net.parameters(), lr=LR, momentum=0.9, weight_decay=5e-4) #优化方式为mini-batch momentum-SGD,并采用L2正则化(权重衰减)

# 训练
if __name__ == "__main__":
	if not os.path.exists(args.outf):
		os.makedirs(args.outf)
    best_acc = 85  #2 初始化best test accuracy
    print("Start Training, Resnet-18!")  # 定义遍历数据集的次数
    with open("acc.txt", "w") as f:
        with open("log.txt", "w")as f2:
            for epoch in range(pre_epoch, EPOCH):
                print('\nEpoch: %d' % (epoch + 1))
                net.train()
                sum_loss = 0.0
                correct = 0.0
                total = 0.0
                for i, data in enumerate(trainloader, 0):
                    # 准备数据
                    length = len(trainloader)
                    inputs, labels = data
                    inputs, labels = inputs.to(device), labels.to(device)
                    optimizer.zero_grad()

                    # forward + backward
                    outputs = net(inputs)
                    loss = criterion(outputs, labels)
                    loss.backward()
                    optimizer.step()

                    # 每训练1个batch打印一次loss和准确率
                    sum_loss += loss.item()
                    _, predicted = torch.max(outputs.data, 1)
                    total += labels.size(0)
                    correct += predicted.eq(labels.data).cpu().sum()
                    print('[epoch:%d, iter:%d] Loss: %.03f | Acc: %.3f%% '
                          % (epoch + 1, (i + 1 + epoch * length), sum_loss / (i + 1), 100. * correct / total))
                    f2.write('%03d %05d |Loss: %.03f | Acc: %.3f%% '
                          % (epoch + 1, (i + 1 + epoch * length), sum_loss / (i + 1), 100. * correct / total))
                    f2.write('\n')
                    f2.flush()

                # 每训练完一个epoch测试一下准确率
                print("Waiting Test!")
                with torch.no_grad():
                    correct = 0
                    total = 0
                    for data in testloader:
                        net.eval()
                        images, labels = data
                        images, labels = images.to(device), labels.to(device)
                        outputs = net(images)
                        # 取得分最高的那个类 (outputs.data的索引号)
                        _, predicted = torch.max(outputs.data, 1)
                        total += labels.size(0)
                        correct += (predicted == labels).sum()
                    print('测试分类准确率为:%.3f%%' % (100 * correct / total))
                    acc = 100. * correct / total
                    # 将每次测试结果实时写入acc.txt文件中
                    print('Saving model......')
                    torch.save(net.state_dict(), '%s/net_%03d.pth' % (args.outf, epoch + 1))
                    f.write("EPOCH=%03d,Accuracy= %.3f%%" % (epoch + 1, acc))
                    f.write('\n')
                    f.flush()
                    # 记录最佳测试分类准确率并写入best_acc.txt文件中
                    if acc > best_acc:
                        f3 = open("best_acc.txt", "w")
                        f3.write("EPOCH=%d,best_acc= %.3f%%" % (epoch + 1, acc))
                        f3.close()
                        best_acc = acc
            print("Training Finished, TotalEPOCH=%d" % EPOCH)


实验结果:best_acc= 95.170%

这里写图片描述
(损失图是matlab画的,用保存下来的txt日志)

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/141094.html原文链接:https://javaforall.net

(1)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Linux CentOS 7安装Oracle11g超完美教程[通俗易懂]

    Linux CentOS 7安装Oracle11g超完美教程[通俗易懂]Oracle部署文章目录Oracle部署1基本环境介绍2检测是否安装了Oracle3卸载Oracle3.1重新做一次虚拟机3.2卸载Oracle4安装准备4.1建立oracle用户和用户组4.2为Oracle的安装创建相关目录4.3优化OS内核参数4.4限制oracle用户的shell权限4.5为Oracle用户添加Oracle环境变量4.6配置hostname(本机IP映射)4.7安装VNC&Oracle相关依赖4.7.1配置yum源4.7.2安装依赖4.7.3检

    2022年7月15日
    18
  • 《畅玩NAS》家庭 NAS 服务器搭建方案「建议收藏」

    《畅玩NAS》家庭 NAS 服务器搭建方案「建议收藏」NAS(NetworkAttachedStorage:网络附属存储)按字面简单说就是连接在网络上,具备资料存储功能的装置,因此也称为“网络存储器”。它是一种专用数据存储服务器。它以数据为中心,将存储设备与服务器彻底分离,集中管理数据,从而释放带宽、提高性能、降低总拥有成本、保护投资。其成本远远低于使用服务器存储,而效率却远远高于后者。目前国际著名的NAS企业有Netapp、EMC、OUO等。说白话,就是家用的服务器。首选谈谈家庭NAS服务器的基本需求:1.7*24小时运行,最好有UPS电源保护

    2022年6月22日
    79
  • anaconda卸载后问题

    anaconda卸载后问题anaconda卸载后问题因platformio问题,我将电脑中的anaconda卸载后,出现重新安装anaconda后,无法使用(无conda命令,无jupyter,spyder等图标的问题);经搜索,通过安装miniconda后,用conda命令安装anaconda解决了问题。但除了了使用anacondaprompt时,出现系统找不到指定路径的提示,比较碍眼,(同cmd亦是)。经查,将注册表中的anaconda字符改为miniconda也能解决问题;如下图…

    2022年6月17日
    142
  • FAT32文件系统结构详解[通俗易懂]

    FAT32文件系统结构详解[通俗易懂]1.SD卡中FAT32文件系统快速入门1.1.理论知识1.1.1.MBR(MainBootRecord)主引导记录,占446字节,为计算机启动后从可启动介质上首先装入内存并且执行的代码,通常用来解释分区结构1.1.2.DBR(DOSBootRecord)DOS引导记录,为操作系统进入文件系统以后可以访问的第一个扇区,通常用来解释文件系统,DBR是由硬盘的MBR装…

    2025年8月18日
    3
  • 信息搜集 – 二层发现 arping[通俗易懂]

    信息搜集 – 二层发现 arping[通俗易懂]0x00:简介在被动信息搜集工作完成后,需要在进一步的对目标进行主动信息搜集,这一阶段主要搜索的信息包括目标主机是否存活,上面开放了哪些端口,有哪些服务,服务系统是什么,开发服务的版本以及上面支撑系统运行的一些中间件或者其他软件的版本(后续可根据版本号查看是否有公开的漏洞问题),在目标主机发现的过程中,不仅要发现目标是否存活,还要发现其整个网段下的其他设备,同时,这些其他设备也应该像目标一样搜…

    2022年5月30日
    39
  • React安装:

    React安装:

    2021年7月3日
    106

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号