布隆过滤器的原理,使用场景和注意事项有哪些_布隆过滤器的基本工作原理

布隆过滤器的原理,使用场景和注意事项有哪些_布隆过滤器的基本工作原理目录什么是布隆过滤器实现原理为啥不用HashMap的问题布隆过滤器数据结构支持删除么如何选择哈希函数个数和布隆过滤器长度最佳实践Redis大Value拆分参考资料什么是布隆过滤器本质上布隆过滤器是一种数据结构,比较巧妙的概率型数据结构(probabilisticdatastructure),特点是高效地插入和查询,可以用来告诉你“某样东西一定不存在或者可能存在”。相比于传统的List、Set、Map等数据结构,它更高效、占用空间更少,但是缺点是其返回的结果是概率性的,而不是确切的。实现

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

什么是布隆过滤器

本质上布隆过滤器是一种数据结构,比较巧妙的概率型数据结构(probabilistic data structure),特点是高效地插入和查询,可以用来告诉你 “某样东西一定不存在或者可能存在”。

相比于传统的 List、Set、Map 等数据结构,它更高效、占用空间更少,但是缺点是其返回的结果是概率性的,而不是确切的。

实现原理

为啥不用 HashMap 的问题

讲述布隆过滤器的原理之前,我们先思考一下,通常你判断某个元素是否存在用的是什么?应该蛮多人回答 HashMap 吧,确实可以将值映射到 HashMap 的 Key,然后可以在 O(1) 的时间复杂度内返回结果,效率奇高。但是 HashMap 的实现也有缺点,例如存储容量占比高,考虑到负载因子的存在,通常空间是不能被用满的,而一旦你的值很多例如上亿的时候,那 HashMap 占据的内存大小就变得很可观了。

还比如说你的数据集存储在远程服务器上,本地服务接受输入,而数据集非常大不可能一次性读进内存构建 HashMap 的时候,也会存在问题。

布隆过滤器数据结构

布隆过滤器是一个 bit 向量或者说 bit 数组,长这样:
在这里插入图片描述
如果我们要映射一个值到布隆过滤器中,我们需要使用多个不同的哈希函数生成多个哈希值,并对每个生成的哈希值指向的 bit 位置 1,例如针对值 “baidu” 和三个不同的哈希函数分别生成了哈希值 1、4、7,则上图转变为:
在这里插入图片描述
Ok,我们现在再存一个值 “tencent”,如果哈希函数返回 3、4、8 的话,图继续变为:
在这里插入图片描述
值得注意的是,4 这个 bit 位由于两个值的哈希函数都返回了这个 bit 位,因此它被覆盖了。现在我们如果想查询 “dianping” 这个值是否存在,哈希函数返回了 1、5、8三个值,结果我们发现 5 这个 bit 位上的值为 0,说明没有任何一个值映射到这个 bit 位上,因此我们可以很确定地说 “dianping” 这个值不存在。而当我们需要查询 “baidu” 这个值是否存在的话,那么哈希函数必然会返回 1、4、7,然后我们检查发现这三个 bit 位上的值均为 1,那么我们可以说 “baidu” 存在了么?答案是不可以,只能是 “baidu” 这个值可能存在。

这是为什么呢?答案跟简单,因为随着增加的值越来越多,被置为 1 的 bit 位也会越来越多,这样某个值 “taobao” 即使没有被存储过,但是万一哈希函数返回的三个 bit 位都被其他值置位了 1 ,那么程序还是会判断 “taobao” 这个值存在。

支持删除么

传统的布隆过滤器并不支持删除操作。但是名为 Counting Bloom filter 的变种可以用来测试元素计数个数是否绝对小于某个阈值,它支持元素删除。可以参考文章 Counting Bloom Filter 的原理和实现

如何选择哈希函数个数和布隆过滤器长度

很显然,过小的布隆过滤器很快所有的 bit 位均为 1,那么查询任何值都会返回“可能存在”,起不到过滤的目的了。布隆过滤器的长度会直接影响误报率,布隆过滤器越长其误报率越小。

另外,哈希函数的个数也需要权衡,个数越多则布隆过滤器 bit 位置位 1 的速度越快,且布隆过滤器的效率越低;但是如果太少的话,那我们的误报率会变高。

在这里插入图片描述
如何选择适合业务的 k 和 m 值呢,这里直接贴一个公式:

在这里插入图片描述
如何推导这个公式这里只是提一句,因为对于使用来说并没有太大的意义,你让一个高中生来推会推得很快。k 次哈希函数某一 bit 位未被置为 1 的概率为:
在这里插入图片描述
插入n个元素后依旧为 0 的概率和为 1 的概率分别是:
在这里插入图片描述
标明某个元素是否在集合中所需的 k 个位置都按照如上的方法设置为 1,但是该方法可能会使算法错误的认为某一原本不在集合中的元素却被检测为在该集合中(False Positives),该概率由以下公式确定
3在这里插入图片描述

最佳实践

常见的适用场景有,利用布隆过滤器减少磁盘 IO 或者网络请求,因为一旦一个值必定不存在的话,我们可以不用进行后续昂贵的查询请求。

另外,既然你使用布隆过滤器来加速查找和判断是否存在,那么性能很低的哈希函数不是个好选择,推荐 MurmurHash、Fnv 这些。

Redis大Value拆分

Redis 因其支持 setbit 和 getbit 操作,且纯内存性能高等特点,因此天然就可以作为布隆过滤器来使用。但是布隆过滤器的不当使用极易产生大 Value,增加 Redis 阻塞风险,因此生成环境中建议对体积庞大的布隆过滤器进行拆分。

拆分的形式方法多种多样,但是本质是不要将 Hash(Key) 之后的请求分散在多个节点的多个小 bitmap 上,而是应该拆分成多个小 bitmap 之后,对一个 Key 的所有哈希函数都落在这一个小 bitmap 上。

参考资料

Enjoy!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/188472.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • javascript简介_javascript对象

    javascript简介_javascript对象JavaScript中ActiveXObject对象是启用并返回Automation对象的引用。使用方法:newObj=newActiveXObject(servername.typename[,location])ActiveXObject对象语法有这些部分:其中newObj是必选项。要赋值为ActiveXObject的变量名。servername是必选项。提供

    2022年10月14日
    1
  • OpenCV学习笔记(30)KAZE 算法原理与源码分析(四)KAZE特征的性能分析与比较

    OpenCV学习笔记(30)KAZE 算法原理与源码分析(四)KAZE特征的性能分析与比较KAZE系列笔记:1. OpenCV学习笔记(27)KAZE算法原理与源码分析(一)非线性扩散滤波2. OpenCV学习笔记(28)KAZE算法原理与源码分析(二)非线性尺度空间构建3. OpenCV学习笔记(29)KAZE算法原理与源码分析(三)特征检测与描述4. OpenCV学习笔记(30)KAZE算法原理与源码分析(四)KAZE特征的性能分析与比较5. OpenCV学习笔记

    2022年6月18日
    29
  • 有感FOC算法学习与实现总结「建议收藏」

    有感FOC算法学习与实现总结「建议收藏」`FieldOrientedControl`磁场定向控制(`FOC`),`FOC`是有效换向的公认方法。`FOC`的核心是估计转子电场的方向。一旦估计了转子的电角度,就将电动机的三相换相,以使定子磁场垂直于转子磁场。本文参考了`TI`,`microchip`的相关文档,基于`STM32F103`系列单片机实现了带编码器的`FOC`算法,实现了对通用伺服电机(表贴式`PMSM`)的控制。

    2022年6月21日
    119
  • 有一种设计风格叫RESTful

    有一种设计风格叫RESTful

    2022年1月29日
    42
  • 图解Java 垃圾回收机制

    图解Java 垃圾回收机制Java技术体系中所提倡的自动内存管理最终可以归结为自动化地解决了两个问题:给对象分配内存以及回收分配给对象的内存。垃圾回收机制的引入有效地解决了内存的回收问题使得他们在编写程序的时候不再需要考虑内存管理。本文首先着重介绍了判断一个对象是否可以被回收的两种经典算法,并详述了四种典型的垃圾回收算法的基本思想及其直接应用——垃圾收集器,最后结合内存回收策略介绍了内存分配规则。

    2022年6月11日
    32
  • cas单点登录的时序图

    cas单点登录的时序图cas系统介绍这里有详细的cas系统介绍:点击查看cas单点登录系统时序图

    2022年6月3日
    38

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号