ResNet18和ResNet50的keras实现

ResNet18和ResNet50的keras实现fromtensorflowimportkerasfromtensorflow.kerasimportlayersINPUT_SIZE=224CLASS_NUM=1000#stage_name=2,3,4,5;block_name=a,b,c,d,e,fdefConvBlock(input_tensor,num_output,stride,stage_name,block_name):filter1,filter2,filter3=num_

大家好,又见面了,我是你们的朋友全栈君。

1.ResNet18

ResNet18

from tensorflow import keras
from tensorflow.keras import layers

INPUT_SIZE = 224
CLASS_NUM = 1000

# stage_name=2,3,4,5; block_name=a,b,c
def ConvBlock(input_tensor, num_output, stride, stage_name, block_name):
    filter1, filter2 = num_output

    x = layers.Conv2D(filter1, 3, strides=stride, padding='same', name='res'+stage_name+block_name+'_branch2a')(input_tensor)
    x = layers.BatchNormalization(name='bn'+stage_name+block_name+'_branch2a')(x)
    x = layers.Activation('relu', name='res'+stage_name+block_name+'_branch2a_relu')(x)

    x = layers.Conv2D(filter2, 3, strides=(1, 1), padding='same', name='res'+stage_name+block_name+'_branch2b')(x)
    x = layers.BatchNormalization(name='bn'+stage_name+block_name+'_branch2b')(x)
    x = layers.Activation('relu', name='res'+stage_name+block_name+'_branch2b_relu')(x)

    shortcut = layers.Conv2D(filter2, 1, strides=stride, padding='same', name='res'+stage_name+block_name+'_branch1')(input_tensor)
    shortcut = layers.BatchNormalization(name='bn'+stage_name+block_name+'_branch1')(shortcut)

    x = layers.add([x, shortcut], name='res'+stage_name+block_name)
    x = layers.Activation('relu', name='res'+stage_name+block_name+'_relu')(x)

    return x

def IdentityBlock(input_tensor, num_output, stage_name, block_name):
    filter1, filter2 = num_output

    x = layers.Conv2D(filter1, 3, strides=(1, 1), padding='same', name='res'+stage_name+block_name+'_branch2a')(input_tensor)
    x = layers.BatchNormalization(name='bn'+stage_name+block_name+'_branch2a')(x)
    x = layers.Activation('relu', name='res'+stage_name+block_name+'_branch2a_relu')(x)

    x = layers.Conv2D(filter2, 3, strides=(1, 1), padding='same', name='res'+stage_name+block_name+'_branch2b')(x)
    x = layers.BatchNormalization(name='bn'+stage_name+block_name+'_branch2b')(x)
    x = layers.Activation('relu', name='res'+stage_name+block_name+'_branch2b_relu')(x)

    shortcut = input_tensor

    x = layers.add([x, shortcut], name='res'+stage_name+block_name)
    x = layers.Activation('relu', name='res'+stage_name+block_name+'_relu')(x)

    return x

def ResNet18(input_shape, class_num):
    input = keras.Input(shape=input_shape, name='input')

    # conv1
    x = layers.Conv2D(64, 7, strides=(2, 2), padding='same', name='conv1')(input)  # 7×7, 64, stride 2
    x = layers.BatchNormalization(name='bn_conv1')(x)
    x = layers.Activation('relu', name='conv1_relu')(x)
    x = layers.MaxPooling2D((3, 3), strides=2, padding='same', name='pool1')(x)   # 3×3 max pool, stride 2

    # conv2_x
    x = ConvBlock(input_tensor=x, num_output=(64, 64), stride=(1, 1), stage_name='2', block_name='a')
    x = IdentityBlock(input_tensor=x, num_output=(64, 64), stage_name='2', block_name='b')

    # conv3_x
    x = ConvBlock(input_tensor=x, num_output=(128, 128), stride=(2, 2), stage_name='3', block_name='a')
    x = IdentityBlock(input_tensor=x, num_output=(128, 128), stage_name='3', block_name='b')

    # conv4_x
    x = ConvBlock(input_tensor=x, num_output=(256, 256), stride=(2, 2), stage_name='4', block_name='a')
    x = IdentityBlock(input_tensor=x, num_output=(256, 256), stage_name='4', block_name='b')

    # conv5_x
    x = ConvBlock(input_tensor=x, num_output=(512, 512), stride=(2, 2), stage_name='5', block_name='a')
    x = IdentityBlock(input_tensor=x, num_output=(512, 512), stage_name='5', block_name='b')

    # average pool, 1000-d fc, softmax
    x = layers.AveragePooling2D((7, 7), strides=(1, 1), name='pool5')(x)
    x = layers.Flatten(name='flatten')(x)
    x = layers.Dense(class_num, activation='softmax', name='fc1000')(x)

    model = keras.Model(input, x, name='resnet18')
    model.summary()
    return model

if __name__ == '__main__':
    model = ResNet18((INPUT_SIZE, INPUT_SIZE, 3), CLASS_NUM)
    print('Done.')

train_resnet18.py

from tensorflow import keras
from tensorflow.keras import layers

INPUT_SIZE = 224
CLASS_NUM = 2

# stage_name=2,3,4,5; block_name=a,b,c
def ConvBlock(input_tensor, num_output, stride, stage_name, block_name):
    filter1, filter2 = num_output

    x = layers.Conv2D(filter1, 3, strides=stride, padding='same', name='res'+stage_name+block_name+'_branch2a')(input_tensor)
    x = layers.BatchNormalization(name='bn'+stage_name+block_name+'_branch2a')(x)
    x = layers.Activation('relu', name='res'+stage_name+block_name+'_branch2a_relu')(x)

    x = layers.Conv2D(filter2, 3, strides=(1, 1), padding='same', name='res'+stage_name+block_name+'_branch2b')(x)
    x = layers.BatchNormalization(name='bn'+stage_name+block_name+'_branch2b')(x)
    x = layers.Activation('relu', name='res'+stage_name+block_name+'_branch2b_relu')(x)

    shortcut = layers.Conv2D(filter2, 1, strides=stride, padding='same', name='res'+stage_name+block_name+'_branch1')(input_tensor)
    shortcut = layers.BatchNormalization(name='bn'+stage_name+block_name+'_branch1')(shortcut)

    x = layers.add([x, shortcut], name='res'+stage_name+block_name)
    x = layers.Activation('relu', name='res'+stage_name+block_name+'_relu')(x)

    return x

def IdentityBlock(input_tensor, num_output, stage_name, block_name):
    filter1, filter2 = num_output

    x = layers.Conv2D(filter1, 3, strides=(1, 1), padding='same', name='res'+stage_name+block_name+'_branch2a')(input_tensor)
    x = layers.BatchNormalization(name='bn'+stage_name+block_name+'_branch2a')(x)
    x = layers.Activation('relu', name='res'+stage_name+block_name+'_branch2a_relu')(x)

    x = layers.Conv2D(filter2, 3, strides=(1, 1), padding='same', name='res'+stage_name+block_name+'_branch2b')(x)
    x = layers.BatchNormalization(name='bn'+stage_name+block_name+'_branch2b')(x)
    x = layers.Activation('relu', name='res'+stage_name+block_name+'_branch2b_relu')(x)

    shortcut = input_tensor

    x = layers.add([x, shortcut], name='res'+stage_name+block_name)
    x = layers.Activation('relu', name='res'+stage_name+block_name+'_relu')(x)

    return x

def ResNet18(input_shape, class_num):
    input = keras.Input(shape=input_shape, name='input')

    # conv1
    x = layers.Conv2D(64, 7, strides=(2, 2), padding='same', name='conv1')(input)  # 7×7, 64, stride 2
    x = layers.BatchNormalization(name='bn_conv1')(x)
    x = layers.Activation('relu', name='conv1_relu')(x)
    x = layers.MaxPooling2D((3, 3), strides=2, padding='same', name='pool1')(x)   # 3×3 max pool, stride 2

    # conv2_x
    x = ConvBlock(input_tensor=x, num_output=(64, 64), stride=(1, 1), stage_name='2', block_name='a')
    x = IdentityBlock(input_tensor=x, num_output=(64, 64), stage_name='2', block_name='b')

    # conv3_x
    x = ConvBlock(input_tensor=x, num_output=(128, 128), stride=(2, 2), stage_name='3', block_name='a')
    x = IdentityBlock(input_tensor=x, num_output=(128, 128), stage_name='3', block_name='b')

    # conv4_x
    x = ConvBlock(input_tensor=x, num_output=(256, 256), stride=(2, 2), stage_name='4', block_name='a')
    x = IdentityBlock(input_tensor=x, num_output=(256, 256), stage_name='4', block_name='b')

    # conv5_x
    x = ConvBlock(input_tensor=x, num_output=(512, 512), stride=(2, 2), stage_name='5', block_name='a')
    x = IdentityBlock(input_tensor=x, num_output=(512, 512), stage_name='5', block_name='b')

    # average pool, 1000-d fc, softmax
    x = layers.AveragePooling2D((7, 7), strides=(1, 1), name='pool5')(x)
    x = layers.Flatten(name='flatten')(x)
    x = layers.Dense(class_num, activation='softmax', name='fc1000')(x)

    model = keras.Model(input, x, name='resnet18')
    model.summary()
    return model

if __name__ == '__main__':
    model = ResNet18((INPUT_SIZE, INPUT_SIZE, 3), CLASS_NUM)
    print('Done.')

predict_resnet18.py

import matplotlib.pyplot as plt

from ResNet18 import ResNet18
import cv2
import numpy as np
from tensorflow.keras import backend as K   # K.set_image_dim_ordering('tf')
from tensorflow.keras.utils import to_categorical

INPUT_IMG_SIZE = 224
NUM_CLASSES = 2
label_dict = { 
   0:'CAT', 1:'DOG'}

def show_predict_probability(y_gts, predictions, x_imgs, predict_probabilitys, idx):
    for i in range(len(label_dict)):
        print(label_dict[i]+', Probability:%1.9f'%(predict_probabilitys[idx][i]))
    print('label: ', label_dict[int(y_gts[idx])], ', predict: ', label_dict[predictions[idx]])
    plt.figure(figsize=(2, 2))
    plt.imshow(np.reshape(x_imgs[idx], (INPUT_IMG_SIZE, INPUT_IMG_SIZE, 3)))
    plt.show()

def plot_images_labels_prediction(images, labels, prediction, idx, num):
    fig = plt.gcf()
    fig.set_size_inches(12, 14)
    if num>25: num=25
    for i in range(0, num):
        ax = plt.subplot(2, 5, 1+i)
        ax.imshow(images[idx], cmap='binary')
        title = 'labels='+str(labels[idx])
        if len(prediction) > 0:
            title += "prediction="+str(prediction[idx])
        ax.set_title(title, fontsize=10)
        idx += 1
    plt.show()

if __name__ == '__main__':
    log_path = r"D:\02.Work\00.LearnML\003.Net\ResNet\log\\"
    model = ResNet18((224, 224, 3), NUM_CLASSES)
    model.load_weights(log_path+"resnet18.h5")

    ### cat dog dataset
    lines = []
    root_path = r"D:\03.Data\01.CatDog"
    with open(root_path + "\\test.txt") as f:
       lines = f.readlines()

    x_images_normalize = []
    y_labels_onehot = []
    y_labels = []

    for i in range(len(lines)):
        img_path = lines[i].split(";")[0]
        img = cv2.imread(img_path)
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        img = cv2.resize(img, (INPUT_IMG_SIZE, INPUT_IMG_SIZE))
        img = img / 255
        x_images_normalize.append(img)
        label = to_categorical(lines[i].split(";")[1], num_classes=NUM_CLASSES)
        y_labels_onehot.append(label)
        y_labels.append(lines[i].split(";")[1])
    x_images_normalize = np.array(x_images_normalize)
    # x_images_normalize = x_images_normalize.reshape(-1, INPUT_IMG_SIZE, INPUT_IMG_SIZE, 3)
    y_labels_onehot = np.array(y_labels_onehot)

    predict_probability = model.predict(x_images_normalize, verbose=1)
    predict = np.argmax(predict_probability, axis=1)

    plot_images_labels_prediction(x_images_normalize, y_labels, predict, 0, 10)
    show_predict_probability(y_labels, predict, x_images_normalize, predict_probability, 0)
    print('done')

2.ResNet50

ResNet50

from tensorflow import keras
from tensorflow.keras import layers

INPUT_SIZE = 224
CLASS_NUM = 1000

# stage_name=2,3,4,5; block_name=a,b,c
def ConvBlock(input_tensor, num_output, stride, stage_name, block_name):
    filter1, filter2, filter3 = num_output

    x = layers.Conv2D(filter1, 1, strides=stride, padding='same', name='res'+stage_name+block_name+'_branch2a')(input_tensor)
    x = layers.BatchNormalization(name='bn'+stage_name+block_name+'_branch2a')(x)
    x = layers.Activation('relu', name='res'+stage_name+block_name+'_branch2a_relu')(x)

    x = layers.Conv2D(filter2, 3, strides=(1, 1), padding='same', name='res'+stage_name+block_name+'_branch2b')(x)
    x = layers.BatchNormalization(name='bn'+stage_name+block_name+'_branch2b')(x)
    x = layers.Activation('relu', name='res'+stage_name+block_name+'_branch2b_relu')(x)

    x = layers.Conv2D(filter3, 1, strides=(1, 1), padding='same', name='res'+stage_name+block_name+'_branch2c')(x)
    x = layers.BatchNormalization(name='bn'+stage_name+block_name+'_branch2c')(x)

    shortcut = layers.Conv2D(filter3, 1, strides=stride, padding='same', name='res'+stage_name+block_name+'_branch1')(input_tensor)
    shortcut = layers.BatchNormalization(name='bn'+stage_name+block_name+'_branch1')(shortcut)

    x = layers.add([x, shortcut], name='res'+stage_name+block_name)
    x = layers.Activation('relu', name='res'+stage_name+block_name+'_relu')(x)

    return x

def IdentityBlock(input_tensor, num_output, stage_name, block_name):
    filter1, filter2, filter3 = num_output

    x = layers.Conv2D(filter1, 1, strides=(1, 1), padding='same', name='res'+stage_name+block_name+'_branch2a')(input_tensor)
    x = layers.BatchNormalization(name='bn'+stage_name+block_name+'_branch2a')(x)
    x = layers.Activation('relu', name='res'+stage_name+block_name+'_branch2a_relu')(x)

    x = layers.Conv2D(filter2, 3, strides=(1, 1), padding='same', name='res'+stage_name+block_name+'_branch2b')(x)
    x = layers.BatchNormalization(name='bn'+stage_name+block_name+'_branch2b')(x)
    x = layers.Activation('relu', name='res'+stage_name+block_name+'_branch2b_relu')(x)

    x = layers.Conv2D(filter3, 1, strides=(1, 1), padding='same', name='res'+stage_name+block_name+'_branch2c')(x)
    x = layers.BatchNormalization(name='bn'+stage_name+block_name+'_branch2c')(x)

    shortcut = input_tensor

    x = layers.add([x, shortcut], name='res'+stage_name+block_name)
    x = layers.Activation('relu', name='res'+stage_name+block_name+'_relu')(x)

    return x

def ResNet50(input_shape, class_num):
    input = keras.Input(shape=input_shape, name='input')

    # conv1
    x = layers.Conv2D(64, 7, strides=(2, 2), padding='same', name='conv1')(input)  # 7×7, 64, stride 2
    x = layers.BatchNormalization(name='bn_conv1')(x)
    x = layers.Activation('relu', name='conv1_relu')(x)
    x = layers.MaxPooling2D((3, 3), strides=2, padding='same', name='pool1')(x)   # 3×3 max pool, stride 2

    # conv2_x
    x = ConvBlock(input_tensor=x, num_output=(64, 64, 256), stride=(1, 1), stage_name='2', block_name='a')
    x = IdentityBlock(input_tensor=x, num_output=(64, 64, 256), stage_name='2', block_name='b')
    x = IdentityBlock(input_tensor=x, num_output=(64, 64, 256), stage_name='2', block_name='c')

    # conv3_x
    x = ConvBlock(input_tensor=x, num_output=(128, 128, 512), stride=(2, 2), stage_name='3', block_name='a')
    x = IdentityBlock(input_tensor=x, num_output=(128, 128, 512), stage_name='3', block_name='b')
    x = IdentityBlock(input_tensor=x, num_output=(128, 128, 512), stage_name='3', block_name='c')
    x = IdentityBlock(input_tensor=x, num_output=(128, 128, 512), stage_name='3', block_name='d')

    # conv4_x
    x = ConvBlock(input_tensor=x, num_output=(256, 256, 1024), stride=(2, 2), stage_name='4', block_name='a')
    x = IdentityBlock(input_tensor=x, num_output=(256, 256, 1024), stage_name='4', block_name='b')
    x = IdentityBlock(input_tensor=x, num_output=(256, 256, 1024), stage_name='4', block_name='c')
    x = IdentityBlock(input_tensor=x, num_output=(256, 256, 1024), stage_name='4', block_name='d')
    x = IdentityBlock(input_tensor=x, num_output=(256, 256, 1024), stage_name='4', block_name='e')
    x = IdentityBlock(input_tensor=x, num_output=(256, 256, 1024), stage_name='4', block_name='f')

    # conv5_x
    x = ConvBlock(input_tensor=x, num_output=(512, 512, 2048), stride=(2, 2), stage_name='5', block_name='a')
    x = IdentityBlock(input_tensor=x, num_output=(512, 512, 2048), stage_name='5', block_name='b')
    x = IdentityBlock(input_tensor=x, num_output=(512, 512, 2048), stage_name='5', block_name='c')

    # average pool, 1000-d fc, softmax
    x = layers.AveragePooling2D((7, 7), strides=(1, 1), name='pool5')(x)
    x = layers.Flatten(name='flatten')(x)
    x = layers.Dense(class_num, activation='softmax', name='fc1000')(x)

    model = keras.Model(input, x, name='resnet50')
    model.summary()
    return model

if __name__ == '__main__':
    model = ResNet50((INPUT_SIZE, INPUT_SIZE, 3), CLASS_NUM)
    print('Done.')
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/141343.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 优先队列「建议收藏」

    优先队列「建议收藏」优先队列比如现实生活中的排队,就符合这种先进先出的队列形式,但是像急诊医院排队,就不可能按照先到先治疗的规则,所以需要使用优先队列。实现优先队列其实都是基于下面这些实现的:可以看出来实现优先队列最

    2022年7月3日
    22
  • (七十六) CountDownTimer

    (七十六) CountDownTimerdemo:https://github.com/happyjiatai/demo_csdn/tree/master/demo_76_countdowntimer1.CountDownTimer简介源码上是这么解释的:Scheduleacountdownuntilatimeinthefuture,with regularnotificationsoninterval…

    2022年9月17日
    0
  • 5500xt挖矿算力_rx470d etc算力「建议收藏」

    5500xt挖矿算力_rx470d etc算力「建议收藏」…每日平均收益为R$4。RX5700XT表现出色的其他加密货币包括:以太坊经典(ETC),拉文币(RVN),天堂协议XHV和Beam(BEAM)。可以用于采矿的同一系列图形卡中的其他型号是RX5700,RX5600XT和RX5500XT。但是,与RX5700XT相比,这些其他型号的利润率较低。NvidiaRTX2060超级频率:1470MHz至1670MHzV…

    2022年6月14日
    141
  • 2020最新阿里美团Java面经

    小弟是97年出生,专科18年毕业,专升本在读。工作时间总计2年半2019年12月30号投了几个简历,收到了杭州阿里和北京美团的面邀阿里,31号电面,2020年元旦中午1点在线编程。最后挂了,面试官大哥说等我工作满三年再捞我北京美团2020年1月2号现场面,技术面过了,最后因为学历是大专遗憾离场接下来的面经将合并两场面试的问题,如果有都问到的会在问题后面标记(double)多线程死锁的条…

    2022年4月12日
    41
  • traceroute命令讲解

    traceroute命令讲解  通过traceroute我们可以知道信息从你的计算机到互联网另一端的主机是走的什么路径。当然每次数据包由某一同样的出发点(source)到达某一同样的目的地(destination)走的路径可能会不一样,但基本上来说大部分时候所走的路由是相同的。linux系统中,我们称之为traceroute,在MS Windows中为tracert。 traceroute通过发送小的数据包到目的设备直到其…

    2022年6月15日
    36
  • let/const 的变量提升与暂时性死区

    let/const 的变量提升与暂时性死区在面试或一些文章中提到var和let/const区别时,总说var有变量提升,let/const不存在变量提升,这种说法是错误的.var和let/const都有变量提升,但是let/const暂时性死区的存在要求调用该类变量前必须先经过显式赋值

    2022年6月23日
    47

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号