Pytroch入坑 3. 自己的人脸数据+迁移学习(resnet18)

Pytroch入坑 3. 自己的人脸数据+迁移学习(resnet18)本文转载自:http://www.zhongruitech.com/856941441.html0.前言之前是使用了mnist数据,且网络结构比较简单,针对自己的数据,如何使用更复杂、经典的网络呢?1.数据集目标是人脸识别,可以看做一个多分类问题,本次实验的数据集为ferest,共200个人,1400张38080图片,比较小。分为train和val两个目录,每个目录下都有200个…

大家好,又见面了,我是你们的朋友全栈君。

本文转载自:http://www.zhongruitech.com/856941441.html

0.前言

之前是使用了mnist数据,且网络结构比较简单,针对自己的数据,如何使用更复杂、经典的网络呢?

1.数据集

目标是人脸识别,可以看做一个多分类问题,本次实验的数据集为ferest,共200个人,1400张38080图片,比较小。
在这里插入图片描述
分为 train 和 val两个目录,每个目录下都有200个子目录。

资源可下载

https://download.csdn.net/download/sinat_37787331/10383836

注意:训练和测试的目录名字和数量必须保持一致,子目录内可以没有图片。

附批量删除、批量改格式的代码

#!/usr/bin/python
# -*- coding: utf-8 -*-
import os
def del_files(path):
  for root , dirs, files in os.walk(path):
    for name in files:
      if name.endswith(".png"):
        os.remove(os.path.join(root, name))

        print ("Delete File: " + os.path.join(root, name))
# test
if __name__ == "__main__":
  path = '/home/syj/Documents/datas/2'
  del_files(path)


gai hou zhui

#!/usr/bin/python
# -*- coding: utf-8 -*-
import os

def model_extentsion(path,before_ext,ext):
    for name in os.listdir(path):
        full_path=os.path.join(path,name)
        if os.path.isfile(full_path):
            split_path=os.path.splitext(full_path)
            pwd_name=split_path[0]
            pwd_ext=split_path[1]
            before_ext1="."+before_ext
            if pwd_ext == before_ext1:
                ext1="."+ext
                pwd_name+=ext1
                re_name=os.path.join(path,pwd_name)
                os.renames(full_path, re_name) 

        else:
            model_extentsion(full_path,before_ext,ext) 

model_extentsion("/home/syj/Documents/datas/Feret/train",'tif', "png")

2.数据加载

这次加载的是自己的数据,大体分为两种

第一种:图片文件夹+txt文档

可借鉴 http://www.bubuko.com/infodetail-2304938.html

**第二种:训练集和测试集分开,且每一类文件都放在同一子目录下。**本文采用这种方法

# 数据人脸

train_data = torchvision.datasets.ImageFolder('/home/syj/Documents/datas/Feret/train',
                                            transform=transforms.Compose([
                                                transforms.Resize(28),

                                                transforms.ToTensor(),
                                                transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])

                                            ]))
                                            

# 批训练 50samples, 1 channel, 28x28 (50, 1, 28, 28)
train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)

test_data = torchvision.datasets.ImageFolder('/home/syj/Documents/datas/Feret/val',
                                            transform=transforms.Compose([
                                                transforms.Resize(28),

                                                transforms.ToTensor(),
                                                transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
                                            ]))
test_loader = Data.DataLoader(dataset=test_data, batch_size=20, shuffle=True)


    data_transforms = {
        'train': transforms.Compose([
            transforms.RandomResizedCrop(224),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
        ]),
        'val': transforms.Compose([
            transforms.Resize(256),
            transforms.CenterCrop(224),  ##224*224为resnet18输入图片尺寸
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
        ]),  #归一化
    }

主要是通过 torchvision.datasets.ImageFolder 这个函数实现的,很方便

具体的归一化等操作介绍可以参考 https://blog.csdn.net/Hungryof/article/details/76649006

3.迁移学习,加载resnet18模型,并进行fine-tuning

官方提供了许多经典的模型,如alnex,vgg,resnet,并且有训练过的参数,可以用来迁移学习

# model_ft = models.resnet18(pretrained=True)
# num_ftrs = model_ft.fc.in_features
# model_ft.fc = nn.Linear(num_ftrs, 200)

三行代码就搭建好了网络,会自动下载resnet18,只是把最后一层fc层由1000(Imaginenet)改为200就行了

4.模型保存和加载

有两种方法,一种只保存参数,一种全保存,后者简单但存储量大,我用的是后者

model_ft = torch.load('/home/syj/Documents/model/resnet18_0.003.pkl')

#torch.save(model_ft, '/home/syj/Documents/model/resnet18_0.003.pkl')

5.结果

我跑了9个epoch,200类的acc在72%左右,接近理论,花了4分钟(gt940m)

可以参考 http://www.cnblogs.com/denny402/p/7520063.html

6.完整代码

from __future__ import print_function, division

import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.autograd import Variable
import torchvision
from torchvision import datasets, models, transforms
import time
import os
import matplotlib as mpl
import matplotlib.pyplot as plt

def train_model(model, criterion, optimizer, scheduler, num_epochs=1):
    since = time.time()

    best_model_wts = model.state_dict()
    best_acc = 0.0

    for epoch in range(num_epochs):
        print('Epoch {}/{}'.format(epoch, num_epochs - 1))
        print('-' * 10)

        # Each epoch has a training and validation phase
        for phase in ['train', 'val']:
            if phase == 'train':
                scheduler.step()
                model.train(True)  # Set model to training mode
            else:
                model.train(False)  # Set model to evaluate mode

            running_loss = 0.0
            running_corrects = 0

            # Iterate over data.
            for data in dataloders[phase]:
                # get the inputs
                inputs, labels = data

                # wrap them in Variable
                if use_gpu:
                    inputs = Variable(inputs.cuda())
                    labels = Variable(labels.cuda())
                else:
                    inputs, labels = Variable(inputs), Variable(labels)

                # zero the parameter gradients
                optimizer.zero_grad()

                # forward
                outputs = model(inputs)
                _, preds = torch.max(outputs.data, 1)
                loss = criterion(outputs, labels)

                # backward + optimize only if in training phase
                if phase == 'train':
                    loss.backward()
                    optimizer.step()

                # statistics
                running_loss += loss.data[0]
                running_corrects += torch.sum(preds == labels.data)
                if phase == 'train':
                    train_loss.append(loss.data[0] / 15)
                    train_acc.append(torch.sum(preds == labels.data) / 15)
                else:
                    test_loss.append(loss.data[0] / 15)
                    test_acc.append(torch.sum(preds == labels.data) / 15)

            epoch_loss = running_loss / dataset_sizes[phase]
            epoch_acc = running_corrects / dataset_sizes[phase]

            print('{} Loss {:.4f} Acc: {:.4f}'.format(
                phase, epoch_loss, epoch_acc))

            # deep copy the model
            if phase == 'val' and epoch_acc > best_acc:
                best_acc = epoch_acc
                best_model_wts = model.state_dict()

    time_elapsed = time.time() - since
    print('Training complete in {:.0f}m {:.0f}s'.format(
        time_elapsed // 60, time_elapsed % 60))
    print('Best val Acc: {:4f}'.format(best_acc))

    # load best model weights
    model.load_state_dict(best_model_wts)
    return model

if __name__ == '__main__':

    # data_transform, pay attention that the input of Normalize() is Tensor and the input of RandomResizedCrop() or RandomHorizontalFlip() is PIL Image
    data_transforms = {
        'train': transforms.Compose([
            transforms.RandomResizedCrop(224),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
        ]),
        'val': transforms.Compose([
            transforms.Resize(256),
            transforms.CenterCrop(224),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
        ]),
    }

    # your image data file
    data_dir = '/home/syj/Documents/datas/Feret'
    image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
                                              data_transforms[x]) for x in ['train', 'val']}
    # wrap your data and label into Tensor
    dataloders = {x: torch.utils.data.DataLoader(image_datasets[x],
                                                 batch_size=10,
                                                 shuffle=True,
                                                 num_workers=10) for x in ['train', 'val']}

    dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}

    # use gpu or not
    use_gpu = torch.cuda.is_available()

    # get model and replace the original fc layer with your fc layer
    # model_ft = models.resnet18(pretrained=True)
    # num_ftrs = model_ft.fc.in_features
    # model_ft.fc = nn.Linear(num_ftrs, 200)
    model_ft = torch.load('/home/syj/Documents/model/resnet18_0.003.pkl')

    ##paint
    train_loss = []
    train_acc = []
    test_loss = []
    test_acc = []

    if use_gpu:
        model_ft = model_ft.cuda()

    # define loss function
    criterion = nn.CrossEntropyLoss()

    # Observe that all parameters are being optimized
    optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.01, momentum=0.9)

    # Decay LR by a factor of 0.1 every 7 epochs
    exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)

    model_ft = train_model(model=model_ft,
                           criterion=criterion,
                           optimizer=optimizer_ft,
                           scheduler=exp_lr_scheduler,
                           num_epochs=2)

    #torch.save(model_ft, '/home/syj/Documents/model/resnet18_0.003.pkl')

    ##paint
    plt.figure()
    plt.subplot(2, 2, 1)
    plt.plot(train_loss, lw = 1.5, label = 'train_loss')

    plt.subplot(2, 2, 2)
    plt.plot(train_acc, lw = 1.5, label = 'train_acc')

    plt.subplot(2, 2, 3)
    plt.plot(test_loss, lw = 1.5,label = 'loss')

    plt.subplot(2, 2, 4)
    plt.plot(test_acc, lw = 1.5, label = 'acc')
    plt.savefig("resnet18_0.01-10.jpg")
    plt.show()
    print(dataset_sizes)

----------
train Loss: 0.1916 Acc: 0.8083
val Loss: 0.0262 Acc: 0.9778
Epoch 24/24
----------
train Loss: 0.2031 Acc: 0.8250
val Loss: 0.0269 Acc: 1.0000
Training complete in 4m 19s
Best val Acc: 1.000000

'''

'''  lr=0.003
Epoch 9/9
----------
train Loss: 0.1358 Acc: 0.6710
val Loss: 0.1135 Acc: 0.6575
Training complete in 9m 43s
Best val Acc: 0.657500
'''
''' lr=0.01 15
Epoch 9/9
----------
train Loss: 0.0415 Acc: 0.8530
val Loss: 0.0802 Acc: 0.7225
Training complete in 10m 6s
Best val Acc: 0.722500
'''

''' 0.01 10
Epoch 38/39
----------
train Loss: 0.0509 Acc: 0.8640
val Loss: 0.1262 Acc: 0.7325
Epoch 39/39
----------
train Loss: 0.0508 Acc: 0.8520
val Loss: 0.1396 Acc: 0.7200
Training complete in 4m 13s
Best val Acc: 0.737500

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/141489.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 4种kill某个用户所有进程的方法

    4种kill某个用户所有进程的方法

    2021年7月8日
    208
  • linux命令行杀死进程_shell脚本获取进程号并杀死进程

    linux命令行杀死进程_shell脚本获取进程号并杀死进程1.kill作用:根据进程号杀死进程用法:kill[信号代码]进程ID举例:[root@localhost~]#psauxf|grephttpdroot49390.00.05160708pts/3S+13:100:00\_grephttpdroot48300.11.32423210272?Ss13:020:00/usr/sbin/h…

    2022年9月1日
    4
  • smartctl用法心得

    smartctl用法心得SMART简介S.M.A.R.T.,全称为“Self-MonitoringAnalysisandReportingTechnology”,即“自我监测、分析及报告技术”。是一种自动的硬盘状态检测与预警系统和规范。通过在硬盘硬件内的检测指令对硬盘的硬件如磁头、盘片、马达、电路的运行情况进行监控、记录并与厂商所设定的预设安全值进行比较,若监控情况将或已超出预设安全值的安全范围,就可以通过主机的监控硬件或软件自动向用户作出警告并进行轻微的自动修复,以提前保障硬盘数据的安全。除一些出厂时间极早的硬盘外,现

    2022年10月8日
    3
  • origin怎么做多组柱状图_origin怎么对比两组数据

    origin怎么做多组柱状图_origin怎么对比两组数据1.数据点的横坐标不是等间距时的曲线绘制用实验数据作图时,会遇到数据点的横坐标不是等间距的情况,比如:X:1,3,4,8,9,12,…Y:10.2,10.5,11.4,11.8,10.9,10.2,…如果只有一组实验数据,则按照普通的方法在Worksheet中分别输入X,Y的值,然后用“线+符号”的方式绘图即可。但是,当有多组此种情况的数据需要绘制在一个图中时,例如:X1:1,3,4,8…

    2022年9月30日
    2
  • Maven历史版本下载「建议收藏」

    Maven历史版本下载「建议收藏」一.Maven官网下载历史版本1.maven下载地址(1)、打开Mvaen官网下载地址(2)、进入历史版本下载地址(3)、历史版本下载页面,选择一个版本进入。(4)、我们选择一个历史版本进来后显示二进制和源码两个下载方式。二进制版本是编译好的,可以直接使用。源码版本未经编译,需要自行编译(5)、选择二进制版本,点击进入下载。(6)、下载下来后直接解压就可以使用了。…

    2022年8月21日
    9
  • 数组转化为list

    数组转化为list1、Arrays.asList(strArray)方式将数组转换List后,不能对List增删,只能查改,否则抛异常。此时是java.util.Arrays.ArrayList这里面有java.util.Arrays里面的内部类,里面没有重写增删方法,就会调用父类的AbstractList,可以看到父类的增删方法,就会报错,即使调用iterator也会报错。publicvoi…

    2022年6月29日
    28

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号