SVR支持向量回归例子「建议收藏」

SVR支持向量回归例子「建议收藏」SVR支持向量回归例子欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML图表FLowchart流程图导出与导入导出导入欢迎使用M…

大家好,又见面了,我是你们的朋友全栈君。

SVR软件包的安装:https://www.cnblogs.com/Ran-Chen/p/9462825.html
%使用SVR模型,得到输入矢量x(x包含3个变量x1,x2,x3)到输出矢量y(y只包含一个变量)之间的映射关系,也就是计算y=f(x1,x2,x3)函数的f
%x1,x2,x3时简单的加法运算 y=x1+x2+x3
%训练个数 训练需要的时间(秒) 误差 相关系数
%100 0.0028 9.3469 0.7711
%500 0.05 7.38 0.8
%1000 0.17 4.5889 0.8618
%10000 4.1250 0.006051 0.9997
%20000 8.98 9.98041e-05 0.9999
%50000 33.24 9.97801e-05 0.9999
%60000
%平方后相加运算 y=x1的平方+x2的平方+x3的平方
%训练个数 训练需要的时间(秒) 误差 相关系数
%100 0.002 3212 0.72033
%500 0.04 2516 0.5748
%1000 0.16 2885 0.62
%10000 12.8 1150 0.7964
%20000 41 376 0.9199
%50000 159 4.90 0.998527
%60000 503 0.92 0.999717
%结论:随着训练SVR模型时使用的数据量变大,训练的效果越好。通过误差变小,相关系数变大来体现。

%%clean work
close all;%关闭所有figure窗口
clear;%清空变量
clc;%清空命令
format compact;%空格紧凑
%生成对模型进行训练的数据
%这个模型为y=f(x1,x2,x3),表示此模型有3个输入变量x1,x2,x3,输出变量有1个,y。
%x1 = (0:0.001:10)’; x2 = (20:0.001:30)’; x3 = (50:0.001:60)’;
x1=randi(10,10000,1); x2=randi(10,10000,1); x3=randi(10,10000,1); %使用1到10之间的随机数进行训练
y = x1.^2 + x2.^2 +x3.^2;
%y = x1 + x2 +x3;
%建立回归模型,也就是对模型进行训练
%x是该模型的输入矢量,x中每行有3个数据,分别是x1,x2,x3,y的每个矢量有1个数据
x(:,1)=x1;x(:,2)=x2;x(:,3)=x3;
fprintf(‘Start SVR train,please waiting …’);
tic;%记录SVR模型训练的时间
model = libsvmtrain(y,x,’-s 3 -t 2 -c 2.2 -g 2.8 -p 0.01’);
toc
%利用建立的模型看其在训练集上的回归效果,也就是使用已经训练后的SVR模型,输入训练时使用的输入数据,预测输出结果
%下面libsvmpredict函数的第一个参数无所谓,但是具有和输出变量一样的列数和行数
%如果设置为训练模型时使用过的输出变量,那么在预测时,
%会计算预测的输出结果值和原始的输出结果值之间的误差mse和相关系数prob
[py,mse,prob] = libsvmpredict(y,x,model,’-b 0’);
%简单的加法运算
%训练个数 训练需要的时间(秒) 误差 相关系数
%100 0.0028 9.3469 0.7711
%500 0.05 7.38 0.8
%1000 0.17 4.5889 0.8618
%10000 4.1250 0.006051 0.9997
%20000 8.98 9.98041e-05 0.9999
%50000 33.24 9.97801e-05 0.9999
%60000
%平方后相加运算
%训练个数 训练需要的时间(秒) 误差
%100 0.002 3212 0.72033
%500 0.04 2516 0.5748
%1000 0.16 2885 0.62
%10000 12.8 1150 0.7964
%20000 41 376 0.9199
%50000 159 4.90 0.998527
%60000 503 0.92 0.999717
%结论:随着训练SVR模型时使用的数据量变大,训练的效果越好。通过误差变小,相关系数变大来体现。
figure;%建立一个窗口
plot(y,‘o’);%原始数据以o这种形式标记
hold on;%保持当前图像不刷新
plot(py,‘r*’);%回归数据以红色的*标记
legend(‘原始数据:训练SVR模型时,使用的输出变量’,‘回归数据:使用训练好的SVR模型,对训练时使用的输入变量进行预测’);%设置图例线条
grid on;%画图的时候添加网格线

%进行预测
testx1 = [8.5;3.6;1.5];testx2 = [2.1;2.6;5.8];testx3 = [3.2;5.5;7.8];
display(‘真实数据’);%控制台输出
testy = testx1.^2 + testx2.^2 + testx3.^2
%testy = testx1 + testx2 + testx3
%下面libsvmpredict函数的第一个参数和第二个参数设置为相同,
%就是收入给已经训练好的模型的输入参数
testx(:,1)=testx1;testx(:,2)=testx2;testx(:,3)=testx3;
[ptesty,tmse,prob2] = libsvmpredict(testy,testx,model,’-b 0’);
display(‘预测数据’);
ptesty

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/142078.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Lombok插件的简介「建议收藏」

    Lombok插件的简介「建议收藏」Lombok插件的简介1Lombok引入2Lombok常见注解使用1@Data2@AllArgsConstructor3@NoArgsConstructor4@ToString5@EqualsAndHashCode6@Getter/@Setter7@Slf4j8@NonNull9@Value10@Builder11@Synchronized12@SneakyThrows13@Cleanup3Lombok原理4关于Lombok总结官网:https://projectlom

    2025年10月4日
    5
  • 它们的定义UIAlertView

    它们的定义UIAlertView

    2022年1月8日
    38
  • Pandas 创建DataFrame提示:type object ‘object‘ has no attribute ‘dtype‘

    Pandas 创建DataFrame提示:type object ‘object‘ has no attribute ‘dtype‘pandas版本0.25.3importpandasaspdsymbol_info_columns=[‘1′,’持仓方向’,’持仓量’,’持仓收益率’,’持仓收益’,’持仓均价’,’当前价格’,’最大杠杆’]#v3symbol_config={‘BTC’:’BTC-USDT-210924′,’LTC’:’LTC-USDT-210924′,’EOS’:’EOS-USDT-210924′,’ETH’:’ETH-USDT-210924′,’XRP’:’

    2022年5月11日
    111
  • JS中promise是什么?

    JS中promise是什么?Promise是异步编程的一中解决方案,最早是由社区提出的,es6中正式的将其纳入,他是一个对象,可以获取到异步的操作,他相比传统的回调函数,更加的强大和合理,避免了回调地狱。所谓的Promise,简单的来说就是一个可以存放未来才能结束的任务或者事件。1.Promise实列有三个状态:-pending(进行中)-resolved(成功)-rejected(失败)当要处理某个任务的时候,promise的状态是pending,任务完成是状态就变成了resolved,任务失败状

    2022年4月30日
    95
  • nodejs显现events.js:72抛出错误

    nodejs显现events.js:72抛出错误

    2022年1月12日
    59
  • IIS本地FTP服务器搭建

    IIS本地FTP服务器搭建WindowsServe 基于 IIS 的 FTP 的服务器搭建

    2025年10月30日
    5

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号