基于Tensorflow + yolo3的安全帽识别系统[通俗易懂]

基于Tensorflow + yolo3的安全帽识别系统[通俗易懂]最近做了一个新的项目,需要将图片或者视频中的人员是否戴安全帽识别出来,并且在网站上进行显示.首先是正常的登录注册目前登录注册有很多方式,这个比较常规,用户名密码登录,也没有写的很复杂.接下来就是主要功能页面了如上图所示,可以进行图片及视频识别图片上传,正在进行识别…

大家好,又见面了,我是你们的朋友全栈君。

最近做了一个新的项目,需要将图片或者视频中的人员是否戴安全帽识别出来,并且在网站上进行显示.使用Tensorflow + yolo3,后端框架为Django。本机配置为AMD4600+1650显卡

2022.3.27日更新:

已完成对外部摄像头的测试,功能正常!

2022.3.20 日更新:

1.重新使用Flask 写了后端

2.将视频识别的结果返回到了网页中,而不是传统的cv 窗口显示。

存在问题:内存堆积,停止请求后,测试发现cv2还会持续读取视频数据一段时间,如果此时再次进行视频或者摄像头识别容易造成内存泄露问题,暂未解决,持续优化中。

2022.3.14 日更新:

优化了后端识别代码,识别速度更快。

视频地址:tensorflow+yolo安全帽识别优化版_哔哩哔哩_bilibiliicon-default.png?t=M276https://www.bilibili.com/video/BV1Aq4y1q7Hk?p=2

tensorflow+yolo安全帽识别优化版

首先是正常的登录注册

def my_login(request):
    if request.method == "GET":
        return render(request, 'auth/auth.html')
    else:
        form = LoginForm(request.POST)
        if form.is_valid():
            username = form.cleaned_data.get('username')
            password = form.cleaned_data.get('pwd')
            next = form.cleaned_data.get("next")
            if next:
                next_url = next.split("=")[1]
            else:
                next_url = ""
            user = authenticate(request,username=username,password=password)
            # print("user",user)
            if user:
                login(request,user)
                request.session.set_expiry(None)
                data = {
                    "next_url":next_url
                }
                return restful.result(data=data)
            else:
                return restful.noauth(message="用户名或者密码错误!")
        else:
            print(form.get_error())
            return restful.paramserror(form.get_error())

基于Tensorflow + yolo3的安全帽识别系统[通俗易懂]基于Tensorflow + yolo3的安全帽识别系统[通俗易懂]

目前登录注册有很多方式,这个比较常规,用户名密码登录,也没有写的很复杂.

接下来就是主要功能页面了

部分识别代码:

        while vid.isOpened():
            _q, image = vid.read()
            frame_id += 1
            t1 = time.time()
            image_h, image_w, _ = image.shape
            bbox_thick = int(1.5 * (image_h + image_w) / 600)

            person_box, helmet_box, bboxes = T.detect_image(image)
            person_box = utils.xyxy2xywh(person_box)
            features = encoder(image, person_box)
            detections = [Detection(bbox, 1.0, feature) for bbox, feature in zip(person_box, features)]
            boxes = np.array([d.tlwh for d in detections])
            scores = np.array([d.confidence for d in detections])
            indices = preprocessing.non_max_suppression(boxes, nms_max_overlap, scores)
            detections = [detections[i] for i in indices]
            [detections[i].match_helmet(helmet_box) for i in range(len(detections))]

            tracker.predict()
            tracker.update(detections, frame_id)
            if len(tracker.lossed) > 0:
                pass
            for id, track in enumerate(tracker.tracks):
                if not track.is_confirmed() or track.time_since_update > 1:
                    continue
                bbox = track.to_tlbr()
                cv2.rectangle(image, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])), track.color,
                              bbox_thick)
                cv2.putText(image, str(track.track_id), (int(bbox[0]), int(bbox[1])), 0, 0.0015 * image_h, (0, 255, 0),
                            bbox_thick // 2)
                if track.is_no_helmet:
                    cv2.putText(image, str('no helmet'), (int(bbox[0] + bbox[2]) // 2, int(bbox[1])), 0,
                                0.0012 * image_h, (0, 0, 255), bbox_thick // 2)
                    no_hat += 1
                else:
                    if track.helmet is not None:
                        bbox = track.helmet
                        cv2.rectangle(image, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])), track.color,
                                      bbox_thick)
                        cv2.putText(image, str('Helmet'), (int(bbox[0] + bbox[2]) // 2, int(bbox[1])), 0,
                                    0.0012 * image_h, (0, 0, 255), bbox_thick // 2)

                for i, (x, y) in enumerate(track.tracker_path[1:]):
                    pre_x, pre_v = track.tracker_path[i]
                    cv2.line(image, (int(pre_x), int(pre_v)), (int(x), int(y)), track.color, bbox_thick)
            cv2.imshow('VideoShow---Press q to exit!', image)

            fps = (fps + (1. / (time.time() - t1))) / 2
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
            # elif cv2.getWindowProperty("VideoShow", cv2.WND_PROP_AUTOSIZE) < 1:
            #     break
            # if cv2.waitKey(1) == 27:
            #     break
            # print("no_hat",no_hat)
        vid.release()
        cv2.destroyAllWindows()

基于Tensorflow + yolo3的安全帽识别系统[通俗易懂]

如上图所示,可以进行图片及视频识别

正在进行识别

基于Tensorflow + yolo3的安全帽识别系统[通俗易懂]

识别代码使用的是tensorflow+opencv ,识别结果还可以.

具体效果

此项目的完整带啊以及上传到了面包多,需要的可以前往下载,传送门:?正在为您运送作品详情

或者+qq1527507926

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/144443.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Python生成随机数矩阵_Python生成50个随机数

    Python生成随机数矩阵_Python生成50个随机数生成随机数使用random模块random.random()用于随机生成一个0到1的浮点数random.randint(start,stop)随机生成[start,stop]区间内的整数代码示例:importrandomprint(random.random())print(random.randint(2,5))输出结果:0.281138941702427152…

    2022年10月4日
    0
  • 软件工程实验报告:图书管理系统

    软件工程实验报告:图书管理系统一、课程设计的目的与要求课程设计目的软件工程课程设计是学习软件工程课程后所进行的实践环节,目的是培养学生用工程化的思想和标准文档化的思想进行软件开发。本次课程设计通过开发一个小型实用的软件系统,亲身体验软件生命周期中的各个环节,以加深对软件工程课程的深入理解、锻炼独立分析、解决问题的能力。课程设计要求2.1课程设计准备1)复习软件工程课程的主要内容,熟练掌握软件生命周期的理论以及各阶段的基本概念。2)明确可行性分析、需求分析、设计、测试等阶段的基本任务和基本方法。3)熟练运用规范化的描述

    2022年8月22日
    8
  • Python的特点是什么_python具有的特点

    Python的特点是什么_python具有的特点一、特点:1.易于学习:Python有相对较少的关键字,结构简单,和一个明确定义的语法,学习起来更加简单。2.易于阅读:Python代码定义的更清晰。3.易于维护:Python的成功在于它的源代码是相当容易维护的。4.一个广泛的标准库:Python的最大的优势之一是丰富的库,跨平台的,在UNIX,Windows和Macintosh兼容很好。5.互动模式:互动模式的支持,您可以从终端输入执行代码并获…

    2022年9月18日
    0
  • 我说我不会算法,阿里把我挂了。[通俗易懂]

    我说我不会算法,阿里把我挂了。[通俗易懂]不说了,字节跳动也反手把我挂了。

    2022年5月18日
    40
  • 特征向量、特征值以及降维方法(PCA、SVD、LDA)

    特征向量、特征值以及降维方法(PCA、SVD、LDA)

    2021年11月19日
    65
  • 一键进入高通9008模式_如何进入高通模式

    一键进入高通9008模式_如何进入高通模式Android8.0高通PDAF调试-actuatorsensitivity有一说一遇到的问题点调试过程中发现进不来pdaf流程log显示如下:01-0108:08:54.42524146352Dmm-camera:<STATS_AF><LOW>3994:af_port_handle_module_event:HandleAFmoduleeventoftype:001-0108:08:54.42524146352

    2022年9月4日
    3

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号