Python解决求最大公约数和最小公倍数问题

Python解决求最大公约数和最小公倍数问题目录一.思路分析1.欧几里得法(辗转相除法)2.穷举法(一个一个除)3.stein算法二.提高要求三.测试截图题目:求两个正整数的最大公约数和最小公倍数。基本要求:1.程序风格良好(使用自定义注释模板),两种以上算法解决最大公约数问题,提供友好的输入输出。提高要求:1.三种以上算法解决两个正整数最大公约数问题。         2.求3个正…

大家好,又见面了,我是你们的朋友全栈君。

目录

一.思路分析

1.欧几里得法(辗转相除法)

2.穷举法(一个一个除)

3.stein算法

二.提高要求

三.测试截图


题目:求两个正整数的最大公约数和最小公倍数。

基本要求:1.程序风格良好(使用自定义注释模板),两种以上算法解决最大公约数问题,提供友好的输入输出。

提高要求:1.三种以上算法解决两个正整数最大公约数问题。

                  2.求3个正整数的最大公约数和最小公倍数。

一.思路分析

    因为之前接触过这个问题,所以自己是知道欧几里得算法和穷举法计算最大公约数,在求出两个数的最大公约数之后,便可以利用lcm(a,b) = (a*b)/gcd(a,b) 计算出两个数的最小公倍数。之后还上网查了一下stein算法,最后在理解stein算法的基础上解决了这个问题。下面我会一一对这几种算法进行分析:

1.欧几里得法(辗转相除法)

    这条算法基于一个定理:两个正整数a和b(a>b),它们的最大公约数等于a除以b的余数c和b之间的最大公约数。比如10和25,25除以10商2余5,那么10和25的最大公约数,等同于10和5的最大公约数。

    基于这条定理:

    首先,我们先计算出a除以b的余数c,把问题转化成求出b和c的最大公约数;然后计算出b除以c的余数d,把问题转化成求出c和d的最大公约数;再然后计算出c除以d的余数e,把问题转化成求出d和e的最大公约数……以此类推,逐渐把两个较大整数之间的运算简化成两个较小整数之间的运算,直到两个数可以整除,或者其中一个数减小到1为止。贴代码:

# -*- coding:utf-8 -*- 
# @Author: Jiawei Han

def first_way(a, b):
    """
    第一种方法:欧几里得算法----辗转相除法
    :param a: 第一个数
    :param b: 第二个数
    :return: 最大公约数
    """
    # 如果最终余数为0 公约数就计算出来了
    while(b!=0):
        temp = a % b
        a = b
        b = temp
    return a

2.穷举法(一个一个除)

    这个比较好理解。因为a,b两个数的最大公因数肯定小于等于相对更小的那个数,所以从两个数中较小数开始由大到小列举,直到找到公约数立即中断列举,得到的公约数便是最大公约数 。代码如下:

def second_way(a, b):
    """
    第二种方法:一个一个除
    :param a: 第一个数
    :param b: 第二个数
    :return: 最大公约数
    """
    # 保证a>b
    if(a<b):
        a,b = b,a
    for i in range(1,b+1):
        if (a%i==0) and (b%i==0):
            value = i;
    return value

3.stein算法

看下面这两个结论

    gcd(a, a) = a, 也就是一个数和他自己的公约数是其自身。

    gcd(ka, kb) = k * gcd(a, b),也就是最大公约数运算和倍乘运算可以交换,特殊的,当k=2时,说明两个偶数的最大公约数比如能被2整除。

def third_way(a,b):
    """
    第三种方法思想:stein算法
        gcd(a,a)=a,也就是一个数和其自身的公约数仍是其自身。
        gcd(ka,kb)=k gcd(a,b),也就是最大公约数运算和倍乘运算可以交换。特殊地,当k=2时,说明两个偶数的最大公约数必然能被2整除。
        当k与b互为质数,gcd(ka,b)=gcd(a,b),也就是约掉两个数中只有其中一个含有的因子不影响最大公约数。特殊地,当k=2时,说明计算一个偶数
    和一个奇数的最大公约数时,可以先将偶数除以2。
    :param a: 第一个数
    :param b: 第二个数
    :return: 最大公约数
    """
    #保证b比a小
    if a < b:
        a, b = b, a

    if (0 == b):
        return a
    # a,b都是偶数 除2右移一位即可
    if a % 2 == 0 and b % 2 == 0:
        return 2 * third_way(a >> 1, b >> 1)
    # a是偶数
    if a % 2 == 0:
        return third_way(a >> 1, b)
    # b是偶数
    if b % 2 == 0:
        return third_way(a, b >> 1)
    # 都是奇数
    return third_way((a + b) >> 1, (a - b) >> 1)

    求出a,b的最大公约数后,利用lcm(a,b) = (a*b)/gcd(a,b) 计算出两个数的最小公倍数:

# 求两个数的最小公倍数
def lcm(a,b):
    return a * b / third_way(a, b)

二.提高要求

    计算三个数的最大公约数时,我是利用之前写好的计算2个数的最大公约数的方法,先算出a,b的公约数,再用a,b的公约数与c再代入方法,此时返回的值就是三个数的最大公约数了。

    同样,在计算三个数的最小公倍数时,多次嵌套,先求出两个数的最小公倍数,再求其与第三个数的最小公倍数。

def three_num(a,b,c):
    """
    求三个数的最大公约数
    :param a: 第一个数
    :param b: 第二个数
    :param c: 第三个数
    :return: 这三个数的最大公约数
    """
    # 多次嵌套,返回3个数的最大公约数
    return first_way(first_way(a,b),c)
a,b,c =map(int,input("请输入需要计算的整数用空格隔开:").split())
        print("这三个数的最大公约数是:" + str(three_num(a,b,c)))
        # 我这里使用多次嵌套,先求出两个数的,再求与第三个数的最小公倍数
        print("这三个数的最小公倍数是:" + str(lcm(a,b)*c/third_way(third_way(a,b),c)))

main方法:

if __name__ == '__main__':
    flag = input("请选择功能:\n   1.计算两个数的最大公约数和最小公倍数\n   2.计算三个数的最大公约数和最小公倍数\n")
    if flag=='1':
        a,b = map(int,input("请输入需要计算的整数用空格隔开:").split())
        print("这两个数的最大公约数为" + str(third_way(a, b)))
        val = lcm(a, b)
        # 利用最大公约数求最小公倍数
        print("最小公倍数为:" + str(val))
    elif flag=='2':
        a,b,c =map(int,input("请输入需要计算的整数用空格隔开:").split())
        print("这三个数的最大公约数是:" + str(three_num(a,b,c)))
        # 我这里使用多次嵌套,先求出两个数的,再求与第三个数的最小公倍数
        print("这三个数的最小公倍数是:" + str(lcm(a,b)*c/third_way(third_way(a,b),c)))
    else:
        print("请输入正确序号")

三.测试截图

求两个数的:

Python解决求最大公约数和最小公倍数问题

求三个数的:

Python解决求最大公约数和最小公倍数问题

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/145747.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 两款实用的DDos攻击工具[通俗易懂]

    两款实用的DDos攻击工具[通俗易懂]两款实用的DDos攻击工具2018-02-22Network•Security865之前为了重现某个bug,需要对网络设备进行ddos攻击测试,同时也是对设备的网络攻击防护功能进行抗压测试。临阵磨枪,google了两款攻击工具,windows平台的hyenae,以及Linux平台的hping3,在此记录一下两者的用法。Hyenaehyenae是在Windows平台上非常好用的一…

    2022年7月27日
    38
  • Servlet账户登陆优化

    Servlet账户登陆优化

    2021年6月19日
    106
  • 腾讯课堂金牌机构靠谱吗_讲护肤品课怎样讲

    腾讯课堂金牌机构靠谱吗_讲护肤品课怎样讲雷军的风口飞猪论,伴随着小米的现象级成功,已经深入创业者之心。以至于,不少创业者都在极力说明,他已站在风口,风马上来。其实,对于正在设计、打磨、运营初创产品的团队,“风口…

    2025年11月5日
    3
  • elementui树形控件_elementui树形控件筛选

    elementui树形控件_elementui树形控件筛选实现效果与原理我们希望实现鼠标移动至树型结构的结点上就显示按钮,移出就隐藏按钮实现原理:是通过@mouseenter和@mouseleave两个属性来控制鼠标hover的效果,再配合v-sho

    2022年7月31日
    12
  • mac goland激活码[最新免费获取]

    (mac goland激活码)JetBrains旗下有多款编译器工具(如:IntelliJ、WebStorm、PyCharm等)在各编程领域几乎都占据了垄断地位。建立在开源IntelliJ平台之上,过去15年以来,JetBrains一直在不断发展和完善这个平台。这个平台可以针对您的开发工作流进行微调并且能够提供…

    2022年3月29日
    179
  • zodmod论坛_我的世界作弊mod

    zodmod论坛_我的世界作弊modmodCount:记录当前集合被修改的次数在所有的集合实现类中(Collection与Map中),都会有一个 modCount 的变量出现,它的作用就是记录当前集合被修改的次数。下面以ArrayList 类进行说明:添加方法:删除方法:可以看出,两个操作都会影响元素的个数。 当我们使用迭代器或 foreach 遍历时,如果你在 foreach 遍历时,自动调用迭代器的迭代方法,此时在遍历过程中调用了集合的add,remove方法时,modCount就会改变,而迭代器记录的modCount

    2022年8月9日
    5

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号