Matlab中的数据预处理-归一化(mapminmax)与标准化(mapstd)

Matlab中的数据预处理-归一化(mapminmax)与标准化(mapstd)最近遇到数据预处理的一些问题,本来很简单的东西,但是却搞的烦烦的,痛定思痛,决定自己实现一下。一、mapminmaxProcessmatricesbymappingrowminimumandmaximumvaluesto[-11]意思是将矩阵的每一行处理成[-1,1]区间,此时对于模式识别或者其他统计学来说,数据应该是每一列是一个样本,每一行是多个样本的同一维,即

大家好,又见面了,我是你们的朋友全栈君。

一、mapminmax

Process matrices by mapping row minimum and maximum values to [-1 1]

意思是将矩阵的每一行处理成[-1,1]区间,此时对于模式识别或者其他统计学来说,数据应该是每一列是一个样本,每一行是多个样本的同一维,即对于一个M*N的矩阵来说,样本的维度是M,样本数目是N,一共N列N个样本。

其主要调用形式有:

1. [Y,PS] = mapminmax(X,YMIN,YMAX)

2. [Y,PS] = mapminmax(X,FP)

3. Y = mapminmax(‘apply’,X,PS)

4. X = mapminmax(‘reverse’,Y,PS)

5. dx_dy = mapminmax(‘dx_dy’,X,Y,PS)

 

对于1和2的调用形式来说,X是预处理的数据,Ymin和Ymax是期望的每一行的最小值与最大值,FP是一个结构体成员主要是FP.ymin, FP.ymax.这个结构体就可以代替Ymin和Ymax,1和2的处理效果一样,只不过参数的带入形式不同。

代码:

x=[2,3,4,5,6;7,8,9,10,11];
mapminmax(x,0,1)
fp.ymin=0;
fp.ymax=1;
mapminmax(x,fp) 

而对于3式,在模式识别或者统计学里,PS是训练样本的数据的映射,即PS中包含了训练数据的最大值和最小值,这里的X是测试样本,对于测试样本来说,预处理应该和训练样本一致即最大值和最小值应该是训练集的最大值与最小值。假设y是测试样本,一共两个测试样本,则代码如下:

x=[2,3,4,5,6;7,8,9,10,11];
y=[2,3;4,5];
[xx,ps]=mapminmax(x,0,1);
mapminmax('apply',y,ps)

对于4式,是预处理之后的数据进行反转得到原始数据。

x=[2,3,4,5,6;7,8,9,10,11];
y=[2,3;4,5];
[xx,ps]=mapminmax(x,0,1);
yy=mapminmax('apply',y,ps);
mapminmax('reverse',yy,ps)

 

对于5式,根据给定的矩阵X、标准化矩阵Y及映射PS,获取逆向导数(reverse derivative)。如果给定的X和Y是m行n列的矩阵,那么其结果dx_dy是一个1×n结构体数组,其每个元素又是一个m×n的对角矩阵。这种用法不常用,这里不再举例。

二、mapminmax原理及其实现

mapminmax的数学公式为y = (ymax-ymin)*(x-xmin)/(xmax-xmin) + ymin。如果某行的数据全部相同,此时xmax=xmin,除数为0,则此时数据不变。

matlab实现为:

function [out]=myMapminmax(x,ymin,ymax)

out=(ymax-ymin).*(x-repmat(min(x,[],2),1,size(x,2)))./repmat((max(x,[],2)-min(x,[],2)),1,size(x,2))+ymin;
index=isnan(out);
out(index)=x(index);

end

注意上面的代码均假设数据x中样本是列向量。

三、mapstd 标准化

Process matrices by mapping each row’s means to 0 and deviations to 1:将矩阵的每一行映射为0均值1方差的数据。

主要调用形式有:

1.  [Y,PS] = mapstd(X,ymean,ystd)

2. [Y,PS] = mapstd(X,FP)

3. Y = mapstd(‘apply’,X,PS)

4. X = mapstd(‘reverse’,Y,PS)

5. dx_dy = mapstd(‘dx_dy’,X,Y,PS)

和mapminmax类似的,1和2式是对数据X进行标准化,其中ymean和ystd是期望得到数据的每一行的均值和方差,同样的,我们也可以用一个结构体包含 ymean 和ystd进行带入。

x=[2,3,4,5,6;7,8,9,10,11];
y=[2,3;4,5];
[xx,ps]=mapstd(x,0,1)
fp.ymean=0;
fp.ystd=1;
[xx,ps]=mapstd(x,fp)

3式是对测试数据进行预处理,利用训练数据中均值和方差进行处理,4式是将预处理之后的数据反转。

x=[2,3,4,5,6;7,8,9,10,11];
y=[2,3;4,5];
[xx,ps]=mapstd(x,0,1);
yy=mapstd('apply',y,ps);

mapstd('reverse',yy,ps)

 四、mapstd标准化的实现

公式为y = (x-xmean)*(ystd/xstd) + ymean。如果设置的ystd=0,或某行的数据全部相同(此时xstd =0)

 

function [out] = myMapstd(x,ymean,ystd)
out=(x-repmat(mean(x,2),1,size(x,2)))./repmat(std(x,0,2),1,size(x,2)).*ystd+ymean;
end

五、关于mean ,std等函数的说明

mean默认是对每一列求和,mean(x,2)是对每一行求和,std函数默认求的是标准差的无偏估计,有三种用法,s = std(X),s = std(X,flag),s = std(X,flag,dim)

其中flag是无偏估计的参数,flag=0是无偏估计,即默认 是无偏估计,flag=1是有偏估计,dim表示对第几维求方差,std(X,0,2)表示对X的每一行做无偏的标准差估计。

 

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/147780.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Class类的getClassLoader()方法

    Class类的getClassLoader()方法packageminglu;importjava.lang.reflect.InvocationTargetException;importjava.lang.reflect.Method;publicclassHelloWorld{ publicstaticvoidmain(String[]args)throwsInstantiationException,

    2022年5月11日
    56
  • java零基础自学_Java零基础自学经验

    java零基础自学_Java零基础自学经验Java零基础自学经验学习Java数学不好行不行?要到能自己开发小软件的水平要多久,入门需要看些什么材料啊,网上资料不是很好,培训又要花钱,新手零基础如何自学Java比较快速?下面是由百分网小编为大家整理的Java零基础自学经验,喜欢的可以收藏一下!了解更多详情资讯,请关注应届毕业生考试网!下面分享新新人类的自学经验之谈:我学了2周了,已经入门了,基本代码都能看懂,看不懂的研究研究也就懂了。重点是…

    2022年6月20日
    26
  • JAVA的extends使用方法

    JAVA的extends使用方法

    2021年12月9日
    50
  • springboot事务管理详解

    springboot事务管理详解1、隔离级别隔离级别是指若干个并发的事务之间的隔离程度,与我们开发时候主要相关的场景包括:脏读取、重复读、幻读。我们可以看org.springframework.transaction.annotation.Isolation枚举类中定义了五个表示隔离级别的值:publicenumIsolation{DEFAULT(-1),READ_UNCOMMITTED(…

    2022年6月10日
    30
  • linux日志审计系统_linux查看审计记录命令

    linux日志审计系统_linux查看审计记录命令Linux日志审计常用命令find、grep、egrep、awk、sedLinux中常见日志以及位置位置名称/var/log/cron记录了系统定时任务相关的日志/var/log/auth.log记录验证和授权方面的信息/var/log/secure同上,只是系统不同/var/log/btmp登录失败记录使用lastb命令查看/var/log/wtmp登录失成功记录使用last命令查看/var/log/lastlog最后一次登录

    2025年6月15日
    0
  • 彩色图和深度图转点云

    彩色图和深度图转点云环境:windows10、VS2013、opencv2.49、openNi、PCL1.8opencv环境搭建参考https://www.cnblogs.com/cuteshongshong/p/4057193.htmlhttps://blog.csdn.net/u013105549/article/details/50493069PCL1.8+openNi搭建参考https://blog.cs…

    2022年4月25日
    38

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号