Opencv分水岭算法——watershed自动图像分割用法[通俗易懂]

Opencv分水岭算法——watershed自动图像分割用法[通俗易懂]分水岭算法是一种图像区域分割法,在分割的过程中,它会把跟临近像素间的相似性作为重要的参考依据,从而将在空间位置上相近并且灰度值相近的像素点互相连接起来构成一个封闭的轮廓,封闭性是分水岭算法的一个重要特征。其他图像分割方法,如阈值,边缘检测等都不会考虑像素在空间关系上的相似性和封闭性这一概念,彼此像素间互相独立,没有统一性。分水岭算法较其他分割方法更具有思想性,更符合人眼对图像的印象。其他关

大家好,又见面了,我是你们的朋友全栈君。

分水岭算法是一种图像区域分割法,在分割的过程中,它会把跟临近像素间的相似性作为重要的参考依据,从而将在空间位置上相近并且灰度值相近的像素点互相连接起来构成一个封闭的轮廓,封闭性是分水岭算法的一个重要特征

其他图像分割方法,如阈值,边缘检测等都不会考虑像素在空间关系上的相似性和封闭性这一概念,彼此像素间互相独立,没有统一性。分水岭算法较其他分割方法更具有思想性,更符合人眼对图像的印象。


其他关于分水岭“聚水盆地”、“水坝”、“分水线”等概念不准备赘述,只探讨一下Opencv中分水岭算法的实现方法watershed——这个“简单”到只有两个参数的函数是如何工作的。


Opencv 中 watershed函数原型:

void watershed( InputArray image, InputOutputArray markers );


第一个参数 image,必须是一个8bit 3通道彩色图像矩阵序列,第一个参数没什么要说的。关键是第二个参数 markers,Opencv官方文档的说明如下:

Before passing the image to the function, you have to roughly outline the desired regions in the image markers with positive (>0) indices. So, every region is represented as one or more connected components with the pixel values 1, 2, 3, and so on. Such markers can be retrieved from a binary mask using findContours() and drawContours(). The markers are “seeds” of the future image regions. All the other pixels in markers , whose relation to the outlined regions is not known and should be defined by the algorithm, should be set to 0’s. In the function output, each pixel in markers is set to a value of the “seed” components or to -1 at boundaries between the regions.


就不一句一句翻译了,大意说的是在执行分水岭函数watershed之前,必须对第二个参数markers进行处理,它应该包含不同区域的轮廓,每个轮廓有一个自己唯一的编号,轮廓的定位可以通过Opencv中findContours方法实现,这个是执行分水岭之前的要求。

接下来执行分水岭会发生什么呢?算法会根据markers传入的轮廓作为种子(也就是所谓的注水点),对图像上其他的像素点根据分水岭算法规则进行判断,并对每个像素点的区域归属进行划定,直到处理完图像上所有像素点。而区域与区域之间的分界处的值被置为“-1”,以做区分。

简单概括一下就是说第二个入参markers必须包含了种子点信息。Opencv官方例程中使用鼠标划线标记,其实就是在定义种子,只不过需要手动操作,而使用findContours可以自动标记种子点。而分水岭方法完成之后并不会直接生成分割后的图像,还需要进一步的显示处理,如此看来,只有两个参数的watershed其实并不简单。


下边通过图示来看一下watershed函数的第二个参数markers在算法执行前后发生了什么变化。对于一个原图:


Opencv分水岭算法——watershed自动图像分割用法[通俗易懂]


经过灰度化、滤波、Canny边缘检测、findContours轮廓查找、轮廓绘制等步骤后终于得到了符合Opencv要求的merkers,我们把merkers转换成8bit单通道灰度图看看它里边到底是什么内容:


这个是分水岭运算前的merkers:

Opencv分水岭算法——watershed自动图像分割用法[通俗易懂]


这个是findContours检测到的轮廓:

Opencv分水岭算法——watershed自动图像分割用法[通俗易懂]


看效果,基本上跟图像的轮廓是一样的,也是简单的勾勒出了物体的外形。但如果仔细观察就能发现,图像上不同线条的灰度值是不同的,底部略暗,越往上灰度越高。由于这幅图像边缘比较少,对比不是很明显,再来看一幅轮廓数量较多的图效果:


这个是分水岭运算前的merkers:

Opencv分水岭算法——watershed自动图像分割用法[通俗易懂]


这个是findContours检测到的轮廓:

Opencv分水岭算法——watershed自动图像分割用法[通俗易懂]


从这两幅图对比可以很明显看到,从图像底部往上,线条的灰度值是越来越高的,并且merkers图像底部部分线条的灰度值由于太低,已经观察不到了相互连接在一起的线条灰度值是一样的,这些线条和不同的灰度值又能说明什么呢?

答案是:每一个线条代表了一个种子,线条的不同灰度值其实代表了对不同注水种子的编号,有多少不同灰度值的线条,就有多少个种子,图像最后分割后就有多少个区域。



再来看一下执行完分水岭方法之后merkers里边的内容发生了什么变化:


Opencv分水岭算法——watershed自动图像分割用法[通俗易懂]


可以看到,执行完watershed之后,merkers里边被分割出来的区域已经非常明显了,空间上临近并且灰度值上相近的区域被划分为一个区域,灰度值是一样,不同区域间被划分开,这其实就是分水岭对图像的分割效果了。


总的概括一下watershed图像自动分割的实现步骤:

1. 图像灰度化、滤波、Canny边缘检测

2. 查找轮廓,并且把轮廓信息按照不同的编号绘制到watershed的第二个入参merkers上,相当于标记注水点。

3. watershed分水岭运算

4. 绘制分割出来的区域,视觉控还可以使用随机颜色填充,或者跟原始图像融合以下,以得到更好的显示效果。


以下是Opencv分水岭算法watershed实现的完整过程:


#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"

#include <iostream>

using namespace cv;
using namespace std;

Vec3b RandomColor(int value);  //生成随机颜色函数

int main( int argc, char* argv[] )
{
	Mat image=imread(argv[1]);    //载入RGB彩色图像
	imshow("Source Image",image);

	//灰度化,滤波,Canny边缘检测
	Mat imageGray;
	cvtColor(image,imageGray,CV_RGB2GRAY);//灰度转换
	GaussianBlur(imageGray,imageGray,Size(5,5),2);   //高斯滤波
	imshow("Gray Image",imageGray); 
	Canny(imageGray,imageGray,80,150);  
	imshow("Canny Image",imageGray);

	//查找轮廓
	vector<vector<Point>> contours;  
	vector<Vec4i> hierarchy;  
	findContours(imageGray,contours,hierarchy,RETR_TREE,CHAIN_APPROX_SIMPLE,Point());  
	Mat imageContours=Mat::zeros(image.size(),CV_8UC1);  //轮廓	
	Mat marks(image.size(),CV_32S);   //Opencv分水岭第二个矩阵参数
	marks=Scalar::all(0);
	int index = 0;
	int compCount = 0;
	for( ; index >= 0; index = hierarchy[index][0], compCount++ ) 
	{
		//对marks进行标记,对不同区域的轮廓进行编号,相当于设置注水点,有多少轮廓,就有多少注水点
		drawContours(marks, contours, index, Scalar::all(compCount+1), 1, 8, hierarchy);
		drawContours(imageContours,contours,index,Scalar(255),1,8,hierarchy);  
	}

	//我们来看一下传入的矩阵marks里是什么东西
	Mat marksShows;
	convertScaleAbs(marks,marksShows);
	imshow("marksShow",marksShows);
	imshow("轮廓",imageContours);
	watershed(image,marks);

	//我们再来看一下分水岭算法之后的矩阵marks里是什么东西
	Mat afterWatershed;
	convertScaleAbs(marks,afterWatershed);
	imshow("After Watershed",afterWatershed);

	//对每一个区域进行颜色填充
	Mat PerspectiveImage=Mat::zeros(image.size(),CV_8UC3);
	for(int i=0;i<marks.rows;i++)
	{
		for(int j=0;j<marks.cols;j++)
		{
			int index=marks.at<int>(i,j);
			if(marks.at<int>(i,j)==-1)
			{
				PerspectiveImage.at<Vec3b>(i,j)=Vec3b(255,255,255);
			}			 
			else
			{
				PerspectiveImage.at<Vec3b>(i,j) =RandomColor(index);
			}
		}
	}
	imshow("After ColorFill",PerspectiveImage);

	//分割并填充颜色的结果跟原始图像融合
	Mat wshed;
	addWeighted(image,0.4,PerspectiveImage,0.6,0,wshed);
	imshow("AddWeighted Image",wshed);

	waitKey();
}

Vec3b RandomColor(int value)    <span style="line-height: 20.8px; font-family: sans-serif;">//生成随机颜色函数</span>
{
	value=value%255;  //生成0~255的随机数
	RNG rng;
	int aa=rng.uniform(0,value);
	int bb=rng.uniform(0,value);
	int cc=rng.uniform(0,value);
	return Vec3b(aa,bb,cc);
}


第一幅图像分割效果:

Opencv分水岭算法——watershed自动图像分割用法[通俗易懂]


按比例跟原始图像融合:

Opencv分水岭算法——watershed自动图像分割用法[通俗易懂]


第二幅图像原始图:

Opencv分水岭算法——watershed自动图像分割用法[通俗易懂]


分割效果:

Opencv分水岭算法——watershed自动图像分割用法[通俗易懂]


按比例跟原始图像融合:

Opencv分水岭算法——watershed自动图像分割用法[通俗易懂]



版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/148402.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • java怎么输出保留两位小数_剖析Java输出怎么保留两位小数「建议收藏」

    java怎么输出保留两位小数_剖析Java输出怎么保留两位小数「建议收藏」Java中,当两个整数相除时,由于小数点以后的数字会被截断,运算结果将为整数,此时若希望得到运算结果为浮点数,必须将两整数其一或是两者都强制转换为浮点数,也就是Java输出怎么保留两位小数?接下来郑州达内Java培训老师给大家以实例说明:Java怎么取两位小数?题目:项目中有一个小需求,两个整数相除,结果需要保留两位小数,即1.00、0.50这种数据格式。以下做法不行,因为两整数相除,小数点以后的…

    2022年7月8日
    19
  • cocoapods最新版本_cocoapods使用

    cocoapods最新版本_cocoapods使用CocoaPods简介CocoaPods负责管理iOS项目中第三方框架。CocoaPods的项目源码在Github上管理。项目从2011年8月12日开始,CocoaPods的出现使得我们可以节省设置和更新第三方开源库的时间。(练习时为了速度一般我都是直接导入工程中,个人比较讨厌写纯代码在Podfile文件中)开始安装安装需要用到Ruby,虽然Mac自带了Ruby,不过版本有点老了,最好更新一…

    2025年5月23日
    0
  • 301跳转与URL转发[通俗易懂]

    301跳转与URL转发[通俗易懂]301跳转与URL转发

    2022年10月9日
    2
  • 菜鸟教程 python 正则表达式_python正则表达式替换

    菜鸟教程 python 正则表达式_python正则表达式替换正则表达式正则表达式(RegularExpression,在代码中常简写为regex、regexp、RE或re)是预先定义好的一个“规则字符率”,通过这个“规则字符串”可以匹配、查找和替换那些

    2022年7月31日
    9
  • ubuntu开机自动打开终端并执行程序

    ubuntu开机自动打开终端并执行程序

    2020年11月8日
    276
  • 使用VMware安装centos7并配置网络

    使用VMware安装centos7并配置网络准备工作:1.VM虚拟机(本文使用VMware14.1.2)2.Centos7安装包(https://www.centos.org/download/)centos官网提供多个版本下载,一般使用标准的DVD版安装版,大约4.2G。也可以使用mini版,后续自己安装第三方软件。各版本区别:https://wiki.centos.org/Manuals/ReleaseNotes/Cent…

    2022年6月6日
    32

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号