01背包问题和完全背包问题「建议收藏」

01背包问题和完全背包问题「建议收藏」在hihocoder上面两期的题目,一个01背包问题,一个完全背包问题。总结一下!

大家好,又见面了,我是你们的朋友全栈君。

在hihocoder上面的题目中看到的这个问题,总结一下。先看01背包问题。

01背包问题:一个背包总容量为V,现在有N个物品,第i个 物品体积为weight[i],价值为value[i],现在往背包里面装东西,怎么装能使背包的内物品价值最大?

看到这个问题,可能会想到贪心算法,但是贪心其实是不对的。例如最少硬币找零问题,要用动态规划。动态规划思想就是解决子问题并记录子问题的解,这样就不用重复解决子问题了。

动态规划先找出子问题,我们可以这样考虑:在物品比较少,背包容量比较小时怎么解决?用一个数组f[i][j]表示,在只有i个物品,容量为j的情况下背包问题的最优解,那么当物品种类变大为i+1时,最优解是什么?第i+1个物品可以选择放进背包或者不放进背包(这也就是0和1),假设放进背包(前提是放得下),那么f[i+1][j]=f[i][j-weight[i+1]+value[i+1];如果不放进背包,那么f[i+1][j]=f[i][j]。

这就得出了状态转移方程:

f[i+1][j]=max(f[i][j],f[i][j-weight[i+1]+value[i+1])。

可以写出代码测试:

#include<iostream>
using namespace std;
#define  V 1500
unsigned int f[10][V];//全局变量,自动初始化为0
unsigned int weight[10];
unsigned int value[10];
#define  max(x,y)	(x)>(y)?(x):(y)
int main()
{
	
	int N,M;
	cin>>N;//物品个数
	cin>>M;//背包容量
	for (int i=1;i<=N; i++)
	{
		cin>>weight[i]>>value[i];
	}
	for (int i=1; i<=N; i++)
		for (int j=1; j<=M; j++)
		{
			if (weight[i]<=j)
			{
				f[i][j]=max(f[i-1][j],f[i-1][j-weight[i]]+value[i]);
			}
			else
				f[i][j]=f[i-1][j];
		}
	
	cout<<f[N][M]<<endl;//输出最优解

}

在hihocoder上面还讲到可以进一步优化内存使用。上面计算f[i][j]可以看出,在计算f[i][j]时只使用了f[i-1][0……j],没有使用其他子问题,因此在存储子问题的解时,只存储f[i-1]子问题的解即可。这样可以用两个一维数组解决,一个存储子问题,一个存储正在解决的子问题。

再进一步思考,计算f[i][j]时只使用了f[i-1][0……j],没有使用f[i-1][j+1]这样的话,我们先计算j的循环时,让j=M……1,只使用一个一维数组即可。

for i=1……N

for j=M……1

f[j]=max(f[j],f[j-weight[i]+value[i])

#include<iostream>
using namespace std;
#define  V 1500
unsigned int f[V];//全局变量,自动初始化为0
unsigned int weight[10];
unsigned int value[10];
#define  max(x,y)	(x)>(y)?(x):(y)
int main()
{
	
	int N,M;
	cin>>N;//物品个数
	cin>>M;//背包容量
	for (int i=1;i<=N; i++)
	{
		cin>>weight[i]>>value[i];
	}
	for (int i=1; i<=N; i++)
		for (int j=M; j>=1; j--)
		{
			if (weight[i]<=j)
			{
				f[j]=max(f[j],f[j-weight[i]]+value[i]);
			}			
		}
	
	cout<<f[M]<<endl;//输出最优解

}

在看完01背包问题,再来看完全背包问题:
一个背包总容量为V,现在有N个物品,第i个 物品体积为weight[i],价值为value[i],每个物品都有无限多件,现在往背包里面装东西,怎么装能使背包的内物品价值最大?

对比一下,看到的区别是,完全背包问题中,物品有无限多件。往背包里面添加物品时,只要当前背包没装满,可以一直添加。那么状态转移方程为:

f[i+1][j]=max(f[i][j-k*weight[i+1]]+k*value[i+1]),其中0<=k<=V/weight[i+1]

使用内存为一维数组,伪代码

for i=1……N

for j=1……M

f[j]=max(f[j],f[j-weight[i]+value[i])

和01背包问题唯一不同的是j是从1到M。01背包问题是在前一个子问题(i-1
物品)的基础上来解决当前问题(i
物品),向i-1种物品时的背包添加第i种物品;而完全背包问题是在解决当前问题(i种物品),向i种物品时的背包添加第i种物品。

代码如下:

#include<iostream>
using namespace std;
#define  V 1500
unsigned int f[V];//全局变量,自动初始化为0
unsigned int weight[10];
unsigned int value[10];
#define  max(x,y)	(x)>(y)?(x):(y)
int main()
{
	
	int N,M;
	cin>>N;//物品个数
	cin>>M;//背包容量
	for (int i=1;i<=N; i++)
	{
		cin>>weight[i]>>value[i];
	}
	for (int i=1; i<=N; i++)
		for (int j=1; j<=M; j++)
		{
			if (weight[i]<=j)
			{
				f[j]=max(f[j],f[j-weight[i]]+value[i]);
			}			
		}
	
	cout<<f[M]<<endl;//输出最优解

}


版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/148471.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Python中if __name__ == ‘__main__‘:的作用和原理「建议收藏」

    Python中if __name__ == ‘__main__‘:的作用和原理「建议收藏」if__name__==’__main__’:的作用一个python文件通常有两种使用方法,第一是作为脚本直接执行,第二是import到其他的python脚本中被调用(模块重用)执行。因此if__name__==’main’:的作用就是控制这两种情况执行代码的过程,在if__name__==’main’:下的代码只有在第一种情况下(即文件作为脚本直接执行)才会…

    2022年6月1日
    27
  • sql中的联合查询「建议收藏」

    sql中的联合查询「建议收藏」我们在实际应用中,或许会用到关于sql的联合查询的应用,下面来总结一下联合查询的具体应用,做一下记录便于记忆。首先,通过一个实例来讲一下联合查询(关键词union)语法:select………unionselect……..union…….select*fromempoloyeeswhereemaillike”%a%”ordepartment_id>90;改用union的用法select*fromempol

    2022年5月12日
    35
  • sublime4 激活码2021【2021.8最新】

    (sublime4 激活码2021)好多小伙伴总是说激活码老是失效,太麻烦,关注/收藏全栈君太难教程,2021永久激活的方法等着你。IntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,下面是详细链接哦~https://javaforall.net/100143.html83PVI25FMO-eyJsaWNlbnNlSW…

    2022年3月27日
    76
  • java中scanner是什么意思_java中scanner是什么

    java中scanner是什么意思_java中scanner是什么java中的scanner是一个类,是用于扫描输入文本的新的实用程序;当在Eclipse中编写Java程序时,如果变量是需要手动输入的时候,此时就可以用到scanner类。java中的scanner是一个类,是用于扫描输入文本的新的实用程序。本篇文章将给大家详细介绍一下,感兴趣的朋友可以来了解一下。当我们在Eclipse中编写Java程序时,如果我们的变量是需要手动输入的时候,我们就可以用到sca…

    2022年7月9日
    24
  • DSP FPGA_fpga oddr

    DSP FPGA_fpga oddr序曲:今年(2021年)7月4日至24日,我指导电子信息工程专业18级的12位同学进行小学期的课程实践。多年以来,我一直想鼓励同学们基于国产的FPGA进行设计和实践,今年终于进行了大胆的尝试。为了课程实践顺利进行,我和12位同学提前了近2个月进行准备。从5月17日(周一)早晨8:00第一次讨论会开始,我和12位同学每周都坚持查阅、学习国内FPGA的资料,每周开讨论会研讨学习进展。研讨会辗转于海空学院会议室、控制学院会议室、新图书馆研讨室……由于同学们课多且分散,同时我的其他…

    2022年10月9日
    0
  • PhpStorm本地断点调试

    PhpStorm本地断点调试1、断点调试php环境搭建2、开始你的断点调试3、断点调试的一些简单操作

    2022年5月21日
    47

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号