vxWorks延时函数

vxWorks延时函数原文地址:https://blog.csdn.net/juana1/article/details/6673762在应用编程的时候,通常会碰到需要一个任务在特定的延时之后执行一个指定的动作,如等待外设以确保数据可靠,控制扬声器发声时间以及串口通信超时重发等。这就需要利用定时器机制来计量特定长度的时间段。vxWorks作为实时嵌入式系统,提供多样的定时接口函数。下面结合我的项目经历和…

大家好,又见面了,我是你们的朋友全栈君。

原文地址:https://blog.csdn.net/juana1/article/details/6673762

在应用编程的时候,通常会碰到需要一个任务在特定的延时之后执行一个指定的动作,如等待外设以确保数据可靠,控制扬声器发声时间以及串口通信超时重发等。这就需要利用定时器机制来计量特定长度的时间段。

    vxWorks作为实时嵌入式系统,提供多样的定时接口函数。下面结合我的项目经历和网上的参考资料列举一些常用的定时方式,并说明其注意事项。

一、taskDelay

    taskDelay(n)使调用该函数的任务延时n个tick(内核时钟周期)。该任务在指定的时间内主动放弃CPU,除了taskDelay(0)专用于任务调度(将CPU交给同一优先级的其他任务)外,任务延时也常用于等待某一外部事件,作为一种定时/延时机制。在没有中断触发时,taskDelay能很方便地实现,且不影响系统整体性能。例如写数据至EEPROM,EEPROM需要一个内部擦除时间(最大擦除时间为l0ms)。以下所提及的一个tick都假设为16.67 ms(1/60 s)。可以简单地调用taskDelay(2)来保证数据擦写完成。按理说taskDelay(1)就足以保证,为什么需要taskDelay(2)呢?

    这正是taskDelay使用的一个缺陷,使用时需要注意。taskDelay(n)表示任务延时至第n个系统时钟到来的时刻,如图1所示。如果在A时刻调用taskDelay(1)仅延时5 ms,则在B时刻taskDelay(1)就刚好是一个tick周期。可见需要10 ms的延时就必须调用taskDelay(2)才能实现。taskDelay有接近一1个tick的误差存在,taskDelay(n)实际上是延时(n-1)tick~n tick的时间。延时精度为l/n,延时1s就是taskDelay(60)的误差极限为1.6%,而taskDelay(1)的误差极限将是100%。

    使用taskDelay需注意的另外一点是:即使经过n个tick,调用延时的任务也不保证返回执行状态,可能有更高或相同优先级的任务占用了CPU。看了上面的介绍,就可以用它模拟实现Sleep函数了,代码如下:

    ST_VOID sMsSleep (ST_LONG ms)
    {

        int m = sysClkRateGet();/*获取内核时钟频率*/
        m = 1000/m;
        m = ms/m + 1;/* taskDelay(n)实际上是延时(n-1)tick~n*tick的时间*/
        taskDelay(m);
    }

下面是taskDelay的延时示意图:

 

二、WatchDog

    VxWorks提供了一种通用的看门狗定时器机制。利用提供的函数,任何任务都可以创建一个看门狗定时器,经过指定的延时后,实现在系统时钟ISR的上下文中运行指定的程序。需要注意的是,看门狗定时触发的程序是在中断级别上执行,而不是在任务的上下文中。因此,看门狗定时挂接的程序编写有一定的限制,这个限制条件与中断服务程序的约束是一样的。比如,不能使用获取信号量的语句,以及像printf()这样的I/O系统函数。

    通过wdCreate()可以创建一个看门狗定时器。调用wdStart()启动定时器,延时参数同taskDelay一样以tick为单位,同时还须指定定时完成后要调用的程序。如果应用程序同时需要多个看门狗函数,则应使用wdCreate()产生多个独立的看门狗ID。因为对于给定的看门狗ID,通过wdStart()只能关联一个看门狗函数。在指定的tick计数到达之前,要取消一个看门狗计时器,可以通过调用wdCancel()实现。每调用一次wdStart(),看门狗定时器只执行一次,因此对于一些要求周期性执行的应用程序,要获得该效果,则定时器函数本身必须通过递归调用wdStart()来重新启动定时器。

    如果利用看门狗定时器实现延时,则存在与taskDelay一样的精度上的缺陷,以tick为基准.并且看门狗关联的函数所受的限制很大,这也是使用不便的一个方面。不过启动看门狗的任务不会被阻塞,因为wdStart()调用立即返回并继续执行。

三、sleep/nanosleep

    sleep()和nanosleep()是VxWorks提供的延时函数接口。但是在实际应用时,默认是没有添加的,得手动添加。sleep以s为单位,nanosleep可以提供更精确的延时;传参是时钟的结构体,参数可以精确到ns,但实际上只能做到大于或等于这个时问。因为skep或nanosleep函数延时的时间基准仍是tick,调用此函数的任务处于任务延时状态,这点与taskDelay()一致。不同的地方是,taskDelay()是用于任务调度,taskDelay(O)有其自身的含义,而sleep(O)则是没有意义的。前面提过,taskDelay(n)延时时间为(n-1)tick~ntick,而sleep/nanosleep则保证实际延时时间大于或等于设定的时间参数。实验代码如下:

    void testTimer(int sec,int nsec)
    {

        struct timespec tm;
        tm.tv_sec = sec;
        tm.tv_nsec = nsec;
        nanosleep(&tm,NULL);
    }

四、高精度时钟sysTimeStamp

    sysTimeStamp()也称“时间戳”。是通过系统时钟实现的。刚开始也觉得费解,系统时钟的定时周期就是tick,怎么实现高精度时钟呢?通过读BSP底层代码发现,sysTimeStamp其实是通过读取该定时器的当前计数值来获取高精度定时的。通过sysTimestampFreq()函数可以得到系统时间戳的频率,它往往反映的是CPU定时器的基准频率。当然,如此高的分辨率只能是一个理想值,不同的系统不一定都能实现。毕竟该时间戳的实现方式有一个致命的弱点:通过查询方式。系统时钟定时中断是以ticb:为单位的,进一步提高分辨率读取定时器计数值(CPU的一个特殊功能寄存器),只能是查询方式实现。代码示例如下:

    void msDelay(int ms)
    {

        int t,t1,t2;
        t1 = sysTimestamp(); /*记录上一轮的时间戳*/
        do{

            t = 0;  /*计数清零*/
            while(t < sysTimestampFreq()/1000)
            {

                t2 = sysTimestamp();  /*读取当前时间戳*/
                if(t2 > t1)
                    t += (t2-t1);
                else
                    t += t2;
                t1 = t2;
            }
        }while(ms–);
    }

    这种定时方式比较占用系统资源,且只适用于短时间的定时,但是实现方便。为确保定时准确,应在锁定中断情况下调用sysTimestamp;否则,应考虑使用sysTimes-tampLock函数。

五、辅助时钟

    辅助时钟是利用目标板上CPU的另一个定时器(除了系统时钟之外)中断实现的。它可以灵活配置实现高分辨率的定时,而且容易实现ms级甚至μs级定时。VxWorks提供了一系列与系统时钟相同的操作接口,用户可以方便地挂接自己的中断处理函数,时钟分辨率的高低取决于硬件定时器的精度和用户中断函数的长短。要将辅助时钟作为精确的延时机制(如ms级延时),可以通过这种方式实现。初始化程序先调用SysAuxClkRateSet()函数设置辅助时钟中断周期为1ms(一般在contig.h文件中AUX_CLK_RATE_MIN和AUX_CLK_RATE_MAX之间,对中断频率作了限定,如果需要可以对此宏定义修改),再通过ysAuxClkConneet()?将用户处理函数连接到辅助时钟中断上,用户处理函数可以为SemGive(semTimer)释放一个同步信号量。编写一个msDelay(intms)作为其他任务调用接口,函数代码如下:

    void msDelay(int ms)
    {

        int i;
        sysAuxClkEnable();  /*启动辅助定时器*/
        for(i = 0;i < ms;i++)
            semTake(semTimer);  /*等待定时中断释放信号量*/
        sysAuxClkDisable();
    }

    这种方式能实现十分精确的定时,调用延时的任务处于任务阻塞状态。但是使用上仍存在缺陷,不能实现多个任务同时调用,且需要CPU的一个时钟资源,如果没有多余的时钟,那么这一方法就不能实现。

    另外还需要注意一点:Tornado的调试工具Browser一>SpyChart的实现原理是利用辅助定时器产生中断,并记录当前被中断的任务,由抽样数据反映各任务CPU占用率的情况。因此如果调试程序中使用了辅助定时器,那么使用Spy Chart时定时处理函数会被重新挂接,原有定时挂接的程序将得不到进行。反之,如果在Spy Chart运行之后挂接辅助定时处理函数,那么Spy Chart的运行将出现问题。实验发现,运行Spy Chart后重新挂接辅助定时处理函数,Spy Chart即使选中自动刷新,各任务状态也不会更新。

    VxWorks提供的定时接口(不一定专门用于定时,也可间接实现)远不只这些。具体使用哪种方式,应根据其精度、资源状态和优先级要求而定。
———————
作者:juana1
来源:CSDN
原文:https://blog.csdn.net/juana1/article/details/6673762
版权声明:本文为博主原创文章,转载请附上博文链接!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/149407.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 二叉树层次遍历算法——C/C++

    二叉树层次遍历算法——C/C++二叉树层序遍历1、算法思想用一个队列保存被访问的当前节点的左右孩子以实现层序遍历。在进行层次遍历的时候,设置一个队列结构,遍历从二叉树的根节点开始,首先将根节点指针入队列,然后从队头取出一个元素,每取一个元素,执行下面两个操作:访问该元素所指向的节点若该元素所指节点的左右孩子节点非空,则将该元素所指节点的左孩子指针和右孩子指针顺序入队。此过程不断进行,当队列为空时,二叉树的层次遍历结束…

    2022年6月5日
    30
  • 【Python】解决使用 plt.savefig 保存图片时一片空白

    【Python】解决使用 plt.savefig 保存图片时一片空白问题当使用如下代码保存使用plt.savefig保存生成的图片时,结果打开生成的图片确实一片空白。importmatplotlib.pyplotasplt”””一些画图代码”””plt.show()plt.savefig(“filename.png”)原因其实产生这个现象的原因很简单:在plt.show()后调用了plt.savefig(),在plt.show()后实际上已经创建

    2022年5月27日
    41
  • aliddns ipv6_linux系统下配置阿里DDNS(IPv6)

    aliddns ipv6_linux系统下配置阿里DDNS(IPv6)IPv6日渐完善,家里的宽带和手机也都分配了ipv6全球单播地址,手机分到了/64,宽带更是分到了/56。测试了一下运营商内外的连通性也都还可以,基本能跑满带宽,IPv6终于可以用起来了,个个都是公网,不用再渴求ipv4和搞内网穿透了。适用此教程适用于基于linux的各种系统,ubuntu、centos、openwrt、群晖等等,本文只介绍IPv6,不涉及IPv4。代码aliddnsipv6_a…

    2022年6月12日
    111
  • springboot修改内置tomcat版本号_springboot整合消息队列

    springboot修改内置tomcat版本号_springboot整合消息队列1、解析SpringBoot父级依赖?123456&lt;parent&gt;&lt;groupId&gt;org.springframework.boot&lt;/groupId&gt;&lt;artifactId&gt;spring-boot-starter-parent&lt;/artifactId&gt;&lt;version&gt;1.5.6.RELEASE&lt;/ver…

    2022年8月30日
    4
  • 如何查看任何一下网站的全部二级域名?

    如何查看任何一下网站的全部二级域名?

    2021年10月21日
    407
  • 移动端避免使用100vh[通俗易懂]

    移动端避免使用100vh[通俗易懂]CSS中的视口单位听起来很棒。如果要设置元素的样式以占据整个屏幕的高度,则可以设置height:100vh,您拥有一个完美的全屏元素,该元素会随着视口的变化而调整大小!可悲的是,事实并…

    2022年6月9日
    68

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号