CNN 卷积神经网络结构

CNN 卷积神经网络结构CNNcnn每一层会输出多个featuremap,每个FeatureMap通过一种卷积滤波器提取输入的一种特征,每个featuremap由多个神经元组成,假如某个featuremap的shape是m*n,则该featuremap有m*n个神经元。对于卷积层会有kernel,记录上一层的featuremap与当前层的卷积核的权重,因此kernel的shape为(上一层feature

大家好,又见面了,我是你们的朋友全栈君。

CNN

cnn每一层会输出多个feature map, 每个Feature Map通过一种卷积滤波器提取输入的一种特征,每个feature map由多个神经元组成,假如某个feature map的shape是m*n, 则该feature map有m*n个神经元。对于卷积层会有kernel, 记录上一层的feature map与当前层的卷积核的权重,因此kernel的shape为(上一层feature map的个数,当前层的卷积核数)。本文默认子采样过程是没有重叠的,卷积过程是每次移动一个像素,即是有重叠的。默认子采样层没有权重和偏置。关于CNN的其它描述不在这里论述,可以参考一下参考文献。只关注如何训练CNN。

CNN网络结构

一种典型卷积网络结构是LeNet-5,用来识别数字的卷积网络。结构图如下(来自Yann LeCun的论文):
LeNet-5
卷积神经网络算法的一个实现文章中,有一个更好看的图:
LeNet-5
该图的输入是一张28*28大小的图像,在C1层有6个5*5的卷积核,因为C1层输出6个(28-5+1)(28-5+1)大小的feature map。然后经过子采样层,这里假设子采样层是对卷积层的均值处理(mean pooling), 其实一般还会有加偏置和激活的操作,为了简化,省略了这两步,只是对卷积层进行一个采样的操作。因此S2层输出的6个feature map大小为(24/2)(24/2).在卷积层C3中,它的输入是6个feature map,与C1不一样(C1只有一个feature map,如果是RGB的话,C1会有三个channel)。C3层有12个5*5卷积核,每个卷积核会与上一层的6个feature map分别做卷积(事实上,一般是选择几种输入feature map来做卷积,而不是全部的feature map),然后对这6个卷积结果求和组成一个新的feature map,即该层会有12个大小为(12-5+1)*(12-5+1)的feature map,这个feature map是经过sigmod 函数处理然后结果下一层S4。
这里写图片描述


图片来源


同理,S4层有12个(与卷积层的feature map数一致)大小为(8/2)*(8/2)的feature map。输出层把S4层的feature mapflatten一个向量,向量长度为12*4*4=192,以该向量作为输入,与下面的其它层全连接,进行分类等操作,也就是说把一张图片变成一个向量,接入到别的网络,如传统的BP神经网络,不过从整体来看,CNN可以看做是一个BP神经网络。在
这里有两张很生动的图来描述这个过程:


这里写图片描述


这里写图片描述

权值共享理解

从代码的实现来看,每个卷积核会与部分或全部的输入(上一层输出)feature map进行卷积求和,但是每个卷积核的权重与一个feature map是一一对应,如上一章节中的C3-S4,说是有12个卷积核,然后就有12个输出feature map,但是每个卷积核与输入的6个feature map的权重都是不一样,即kernel不一样,也就是说每个卷积核的权重与一个feature map是一一对应。至于权值共享的话,对于同一个输入的feature map的神经元patch,用的是同一个卷积核权重,这个是共享的,只在同feature map共享,不在跨feature map共享,只是个人理解,有可能有错,if wrong please correct me.

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/149707.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • java switch的意思_java switch

    java switch的意思_java switchjavaswitch[编辑]概述Java中的switch是“开关”的意思,有时也被划分为一种“选择语句”。根据一个整数表达式的值,switch语句可从一系列代码选出一段执行。一.Java的简介Java是一种可以撰写跨平台应用软件的面向对象的程序设计语言。Java技术具有卓越的通用性、高效性、平台移植性和安全性,广泛应用于PC、数据中心、游戏控制台、科学超级计算机、移动电话和互联网,同时拥有全球…

    2022年7月26日
    3
  • python-louvain_louvin算法

    python-louvain_louvin算法本发明涉及数据挖掘技术领域,尤其涉及一种基于Louvain算法的社区发现方法及一种基于Louvain算法的社区发现系统背景技术:随着信息化技术的发展,信息系统中保存着大量用户的信息特征,用户与用户之间也存在着某种关联性。用户的特征具有多维度,且多关联性。社区发现能帮助人们更有效地了解网络的结构特征,从而提供更有效、更具个性化的服务。当前,许多研究通过分析网络的结构来发现社区。其中,Blondel等…

    2025年6月24日
    1
  • common-dbutils.jar学习心得

    common-dbutils.jar学习心得

    2021年5月24日
    203
  • SharePoint BreadCrumb

    SharePoint BreadCrumb

    2021年8月5日
    56
  • 外汇区块链内容平台_组建外汇交易工作室

    外汇区块链内容平台_组建外汇交易工作室在过去几年中,由区块链驱动的比特币对全球财务,特别是外汇行业产生了重大影响。这种创新的加密货币在全球范围内大肆挥霍,并成为头条新闻,很快就能感受到它的存在。虽然比特币很可能继续对外汇行业产生影响,但它实际上是锁定链,这种货币背后的技术,将对外汇行业产生更显着和不可逆转的影响。外汇产业的当前景观外汇市场是全球最大,最具流动性的市场。该行业每周五天,每天24小时开放,主要位于伦敦,而纽约市的每日营…

    2022年9月11日
    1
  • 拉姆达表达式启动一个线程

    拉姆达表达式启动一个线程publicstaticvoidmain(String[]args){Mythreadmythread=newMythread();newThread(()->mythread.r()).start();}staticclassMythread{publicvoidr(){intcount=0;for(inti=0;i<=100;i++){S…

    2022年9月2日
    7

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号