CNN 卷积神经网络结构

CNN 卷积神经网络结构CNNcnn每一层会输出多个featuremap,每个FeatureMap通过一种卷积滤波器提取输入的一种特征,每个featuremap由多个神经元组成,假如某个featuremap的shape是m*n,则该featuremap有m*n个神经元。对于卷积层会有kernel,记录上一层的featuremap与当前层的卷积核的权重,因此kernel的shape为(上一层feature

大家好,又见面了,我是你们的朋友全栈君。

CNN

cnn每一层会输出多个feature map, 每个Feature Map通过一种卷积滤波器提取输入的一种特征,每个feature map由多个神经元组成,假如某个feature map的shape是m*n, 则该feature map有m*n个神经元。对于卷积层会有kernel, 记录上一层的feature map与当前层的卷积核的权重,因此kernel的shape为(上一层feature map的个数,当前层的卷积核数)。本文默认子采样过程是没有重叠的,卷积过程是每次移动一个像素,即是有重叠的。默认子采样层没有权重和偏置。关于CNN的其它描述不在这里论述,可以参考一下参考文献。只关注如何训练CNN。

CNN网络结构

一种典型卷积网络结构是LeNet-5,用来识别数字的卷积网络。结构图如下(来自Yann LeCun的论文):
LeNet-5
卷积神经网络算法的一个实现文章中,有一个更好看的图:
LeNet-5
该图的输入是一张28*28大小的图像,在C1层有6个5*5的卷积核,因为C1层输出6个(28-5+1)(28-5+1)大小的feature map。然后经过子采样层,这里假设子采样层是对卷积层的均值处理(mean pooling), 其实一般还会有加偏置和激活的操作,为了简化,省略了这两步,只是对卷积层进行一个采样的操作。因此S2层输出的6个feature map大小为(24/2)(24/2).在卷积层C3中,它的输入是6个feature map,与C1不一样(C1只有一个feature map,如果是RGB的话,C1会有三个channel)。C3层有12个5*5卷积核,每个卷积核会与上一层的6个feature map分别做卷积(事实上,一般是选择几种输入feature map来做卷积,而不是全部的feature map),然后对这6个卷积结果求和组成一个新的feature map,即该层会有12个大小为(12-5+1)*(12-5+1)的feature map,这个feature map是经过sigmod 函数处理然后结果下一层S4。
这里写图片描述


图片来源


同理,S4层有12个(与卷积层的feature map数一致)大小为(8/2)*(8/2)的feature map。输出层把S4层的feature mapflatten一个向量,向量长度为12*4*4=192,以该向量作为输入,与下面的其它层全连接,进行分类等操作,也就是说把一张图片变成一个向量,接入到别的网络,如传统的BP神经网络,不过从整体来看,CNN可以看做是一个BP神经网络。在
这里有两张很生动的图来描述这个过程:


这里写图片描述


这里写图片描述

权值共享理解

从代码的实现来看,每个卷积核会与部分或全部的输入(上一层输出)feature map进行卷积求和,但是每个卷积核的权重与一个feature map是一一对应,如上一章节中的C3-S4,说是有12个卷积核,然后就有12个输出feature map,但是每个卷积核与输入的6个feature map的权重都是不一样,即kernel不一样,也就是说每个卷积核的权重与一个feature map是一一对应。至于权值共享的话,对于同一个输入的feature map的神经元patch,用的是同一个卷积核权重,这个是共享的,只在同feature map共享,不在跨feature map共享,只是个人理解,有可能有错,if wrong please correct me.

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/149707.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 3、基础数据类型和用户交互

    1,基础数据类型。1、int( 整数类型): 在32位机器上,整数的位数为32位,取值范围为-2**31~2**31-1,即-2147483648~2147483647 在64位系统上,整数的位数为64位,取值范围为-2**63~2**63-1,即-9223372036854775808~9223372036854775807数值运算: + – * / ** %2、long(长整型…

    2021年11月30日
    44
  • pxe装机「建议收藏」

    pxe装机「建议收藏」安装环境:一台已安装Linux系统的主机作为PXEServer,本文中PXEServer使用的系统是CentOS7;若干台待安装CentOS7的裸主机作为PXEClient;PXEServer与所有PXEClient处于同一局域网中;所有主机支持PXE启动安装方式。PXEServer安装及配置流程:\1.配置DHCP服务\2.配置TFTP服务\3.配…

    2022年6月16日
    33
  • java中array的方法_array java

    java中array的方法_array java题目要求为:卡拉兹(Callatz)猜想:对任何一个自然数n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把(3n+1)砍掉一半。这样一直反复砍下去,最后一定在某一步得到n=1。当我们验证卡拉兹猜想的时候,为了避免重复计算,可以记录下递推过程中遇到的每一个数。例如对n=3进行验证的时候,我们需要计算3、5、8、4、2、1,则当我们对n=5、8、4、2进行验证的时候,就可以直接判定卡拉兹猜想的…

    2026年2月1日
    5
  • 根据美光内存颗粒上的编码查询对应型号

    根据美光内存颗粒上的编码查询对应型号根据美光内存颗粒上的编码查询对应型号今天遇到需要查看美光内存颗粒容量的问题。美光FBGA封装的DDR颗粒上只有两行,每行5位的编码。根据美光官网上的说明,由于FBGA封装上空间的限制,不能印完整的型号信息,只能用编码表示,其中第二行的5位编码可以用于查询对应的型号信息。官方提供了FBGA&ComponentMarkingDecoder工具来查询FBGAcode对应的型号,进而就可以查找到了

    2022年6月22日
    35
  • LaTeX简明教程(一)[通俗易懂]

    LaTeX简明教程(一)[通俗易懂]LaTeX的安装配置与第一个latex文件的编译(hellolatex!)

    2022年7月1日
    25
  • Hackbar 免费下载+使用指南

    Hackbar 免费下载+使用指南Ctrl+Enter执行

    2022年6月7日
    44

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号