java并发之SynchronousQueue实现原理[通俗易懂]

java并发之SynchronousQueue实现原理[通俗易懂]前言SynchronousQueue是一个比较特别的队列,由于在线程池方面有所应用,为了更好的理解线程池的实现原理,笔者花了些时间学习了一下该队列源码(JDK1.8),此队列源码中充斥着大量的CAS语句,理解起来是有些难度的,为了方便日后回顾,本篇文章会以简洁的图形化方式展示该队列底层的实现原理。SynchronousQueue简单使用经典的生产者-消费者模式,操作流程是这样的:有多个生产者,可以并

大家好,又见面了,我是你们的朋友全栈君。

前言

SynchronousQueue是一个比较特别的队列,由于在线程池方面有所应用,为了更好的理解线程池的实现原理,笔者花了些时间学习了一下该队列源码(JDK1.8),此队列源码中充斥着大量的CAS语句,理解起来是有些难度的,为了方便日后回顾,本篇文章会以简洁的图形化方式展示该队列底层的实现原理。

SynchronousQueue简单使用

经典的生产者-消费者模式,操作流程是这样的:

有多个生产者,可以并发生产产品,把产品置入队列中,如果队列满了,生产者就会阻塞;

有多个消费者,并发从队列中获取产品,如果队列空了,消费者就会阻塞;

如下面的示意图所示:

这里写图片描述

SynchronousQueue 也是一个队列来的,但它的特别之处在于它内部没有容器,一个生产线程,当它生产产品(即put的时候),如果当前没有人想要消费产品(即当前没有线程执行take),此生产线程必须阻塞,等待一个消费线程调用take操作,take操作将会唤醒该生产线程,同时消费线程会获取生产线程的产品(即数据传递),这样的一个过程称为一次配对过程(当然也可以先take后put,原理是一样的)。

我们用一个简单的代码来验证一下,如下所示:

package com.concurrent;

import java.util.concurrent.SynchronousQueue;

public class SynchronousQueueDemo { 
   
    public static void main(String[] args) throws InterruptedException {
        final SynchronousQueue<Integer> queue = new SynchronousQueue<Integer>();

        Thread putThread = new Thread(new Runnable() {
            @Override
            public void run() {
                System.out.println("put thread start");
                try {
                    queue.put(1);
                } catch (InterruptedException e) {
                }
                System.out.println("put thread end");
            }
        });

        Thread takeThread = new Thread(new Runnable() {
            @Override
            public void run() {
                System.out.println("take thread start");
                try {
                    System.out.println("take from putThread: " + queue.take());
                } catch (InterruptedException e) {
                }
                System.out.println("take thread end");
            }
        });

        putThread.start();
        Thread.sleep(1000);
        takeThread.start();
    }
}

一种输出结果如下:

put thread start
take thread start
take from putThread: 1
put thread end
take thread end

从结果可以看出,put线程执行queue.put(1) 后就被阻塞了,只有take线程进行了消费,put线程才可以返回。可以认为这是一种线程与线程间一对一传递消息的模型。

SynchronousQueue实现原理

不像ArrayBlockingQueue、LinkedBlockingDeque之类的阻塞队列依赖AQS实现并发操作,SynchronousQueue直接使用CAS实现线程的安全访问。由于源码中充斥着大量的CAS代码,不易于理解,所以按照笔者的风格,接下来会使用简单的示例来描述背后的实现模型。

队列的实现策略通常分为公平模式和非公平模式,接下来将分别进行说明。

公平模式下的模型:

公平模式下,底层实现使用的是TransferQueue这个内部队列,它有一个head和tail指针,用于指向当前正在等待匹配的线程节点。
初始化时,TransferQueue的状态如下:

这里写图片描述

接着我们进行一些操作:

1、线程put1执行 put(1)操作,由于当前没有配对的消费线程,所以put1线程入队列,自旋一小会后睡眠等待,这时队列状态如下:

这里写图片描述

2、接着,线程put2执行了put(2)操作,跟前面一样,put2线程入队列,自旋一小会后睡眠等待,这时队列状态如下:

这里写图片描述

3、这时候,来了一个线程take1,执行了 take操作,由于tail指向put2线程,put2线程跟take1线程配对了(一put一take),这时take1线程不需要入队,但是请注意了,这时候,要唤醒的线程并不是put2,而是put1。为何? 大家应该知道我们现在讲的是公平策略,所谓公平就是谁先入队了,谁就优先被唤醒,我们的例子明显是put1应该优先被唤醒。至于读者可能会有一个疑问,明明是take1线程跟put2线程匹配上了,结果是put1线程被唤醒消费,怎么确保take1线程一定可以和次首节点(head.next)也是匹配的呢?其实大家可以拿个纸画一画,就会发现真的就是这样的。
公平策略总结下来就是:队尾匹配队头出队。
执行后put1线程被唤醒,take1线程的 take()方法返回了1(put1线程的数据),这样就实现了线程间的一对一通信,这时候内部状态如下:

这里写图片描述

4、最后,再来一个线程take2,执行take操作,这时候只有put2线程在等候,而且两个线程匹配上了,线程put2被唤醒,
take2线程take操作返回了2(线程put2的数据),这时候队列又回到了起点,如下所示:

这里写图片描述

以上便是公平模式下,SynchronousQueue的实现模型。总结下来就是:队尾匹配队头出队,先进先出,体现公平原则。

非公平模式下的模型:

我们还是使用跟公平模式下一样的操作流程,对比两种策略下有何不同。非公平模式底层的实现使用的是TransferStack,
一个栈,实现中用head指针指向栈顶,接着我们看看它的实现模型:

1、线程put1执行 put(1)操作,由于当前没有配对的消费线程,所以put1线程入栈,自旋一小会后睡眠等待,这时栈状态如下:

这里写图片描述

2、接着,线程put2再次执行了put(2)操作,跟前面一样,put2线程入栈,自旋一小会后睡眠等待,这时栈状态如下:

这里写图片描述

3、这时候,来了一个线程take1,执行了take操作,这时候发现栈顶为put2线程,匹配成功,但是实现会先把take1线程入栈,然后take1线程循环执行匹配put2线程逻辑,一旦发现没有并发冲突,就会把栈顶指针直接指向 put1线程

这里写图片描述

4、最后,再来一个线程take2,执行take操作,这跟步骤3的逻辑基本是一致的,take2线程入栈,然后在循环中匹配put1线程,最终全部匹配完毕,栈变为空,恢复初始状态,如下图所示:

这里写图片描述

可以从上面流程看出,虽然put1线程先入栈了,但是却是后匹配,这就是非公平的由来。

总结

SynchronousQueue由于其独有的线程一一配对通信机制,在大部分平常开发中,可能都不太会用到,但线程池技术中会有所使用,由于内部没有使用AQS,而是直接使用CAS,所以代码理解起来会比较困难,但这并不妨碍我们理解底层的实现模型,在理解了模型的基础上,有兴趣的话再查阅源码,就会有方向感,看起来也会比较容易,希望本文有所借鉴意义。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/152138.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 详解Java虚拟机[通俗易懂]

    详解Java虚拟机[通俗易懂]JAVA虚拟机

    2022年7月8日
    21
  • MFC 进度条使用方法[通俗易懂]

    MFC 进度条使用方法[通俗易懂]目的:学习MFC进度条控件的用法;步骤:新建一个对话框项目。添加控件“progress”“static”è改名了“进度”,添加两个BUTTON名字分别为“后退”“前进”,如下图:为static控件添加CString类型的数据变量m_present;为progress添加control类型的数据变量m_pro初始化进度条:右键classwinzerd,选中如下项目

    2022年7月27日
    15
  • 是学Java好呢?还是学C++更有前途?

    是学Java好呢?还是学C++更有前途?最近有不少初学编程的朋友问:他们比较倾向于Java和C++作为他们首选学习语言,但是学Java好呢?还是学C++更有前途?到底哪一门语言更有“钱途”呢?这个问题问的好,很多初学者都会有类似的疑问,今天我就来给大家简单的解答一下。1、C++和Java在编程排行榜中的排名作为IT行业的软件研发人员,在我看来,这两种语言都可以学,都很有前途。其实Java和C++一直名列世界编程语言排行榜的前几位,始终是热门的开发语言,下图是最近的世界编程语言排行榜:不管是从世界…

    2022年7月17日
    18
  • Cloud Foundry中gorouter对StickySession的支持

    Cloud Foundry中gorouter对StickySession的支持

    2021年11月28日
    50
  • js中的闭包[通俗易懂]

    js中的闭包[通俗易懂]闭包是js的一个难点也是它的一个特色,是我们必须掌握的js高级特性,那么什么是闭包呢?它又有什么用呢?我们都知道,js的作用域分两种,全局和局部,基于我们所熟悉的作用域链相关知识,我们知道在js作用域环境中访问变量的权利是由内向外的,内部作用域可以获得当前作用域下的变量并且可以获得当前包含当前作用域的外层作用域下的变量,反之则不能,也就是说在外层作用域下无法获取内层作用域下的变量,同样在不同的函…

    2022年6月25日
    28
  • 无锁编程实例

    无锁编程实例最近在研究nginx的自旋锁的时候,又见到了GCCCAS原子操作,于是决定动手分析下CAS实现的无锁到底性能如何,网上关于CAS实现无锁的文章很多,但少有研究这种无锁的性能提升的文章,这里就以实验结果和我自己的理解逐步展开。1.什么是CAS原子操作在研究无锁之前,我们需要首先了解一下CAS原子操作——Compare&Set,或是Compare&Swap,现在

    2022年6月3日
    33

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号