大数据——Flume+Kafka+Flume整合模式

大数据——Flume+Kafka+Flume整合模式创建kafka主题#启动kafka服务kafka-server-start.sh/opt/software/kafka280cala212/conf/kraft/server.properites#创建主题#topic主题名test01#partitions分区数1#replication-factor备份数量1kafka-topics.sh–create–topictest01–partitions1–replication-factor1…

大家好,又见面了,我是你们的朋友全栈君。

大数据——Flume+Kafka+Flume整合模式

创建kafka主题

#启动kafka服务
kafka-server-start.sh /opt/software/kafka280scala212/conf/kraft/server.properites

#创建主题
#topic主题名test01    
#partitions分区数1 
#replication-factor备份数量1
kafka-topics.sh --create --topic test01 --partitions 1 --replication-factor 1 --bootstrap-server 192.168.131.200:9092

#查看主题
kafka-topics.sh --list --bootstrap-server 192.168.131.200:9092

创建flume配置文件(采用KafkaSink作为kafka生产者)

#创建并编辑文件名为flume_kafka01.conf配置文件
vim /root/flume/flume_kafka01.conf

#创建flume 的三大组件sources channels sinks
a1.sources = s1
a1.channels = c1
a1.sinks = k1

#这里选用的是taildir类型的source,支持断点续采
a1.sources.s1.type = taildir

#需要侦听的文件,支持多目录侦听
a1.sources.s1.filegroups = f1
#侦听前缀为prolog的文件
a1.sources.s1.filegroups.f1 = /root/flume_log/prolog*
#断点记录保存文件路径
a1.sources.s1.positionFile = /opt/software/fluem190/data/taildir/tail_prolog_01.json
#设置采集批量
a1.sources.s1.batchSize = 10

a1.channels.c1.type = file
a1.channels.c1.file.checkpointDir = /opt/software/flume190/mydata/checkpoint04
a1.channels.c1.file.capacity = 1000
a1.channels.c1.file.transactionCapacity = 100
#transactionCapacity 默认值为100,且必须大于100
#transactionCapacity >= batchSize

a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
a1.sinks.k1.kafka.bootstrap.servers = 192.168.131.200:9092
a1.sinks.k1.kafka.topic = test01
a1.sinks.k1.kafka.flumeBatchSize = 10
a1.sinks.k1.kafka.producer.linger.ms = 500
a1.sinks.k1.kafka.acks = 1

a1.sources.s1.channels = c1
a1.sinks.k1.channel = c1

创建flume配置文件(采用KafkaSource作为kafka消费者)

vim /root/flume/kafka_flume01.conf

a1.sources = s1
a1.channels = c1
a1.sinks = k1

a1.sources.s1.type = org.apache.flume.source.kafka.KafkaSource
a1.sources.s1.batchSize = 10
a1.sources.si.batchDurationMillis = 2000
a1.sources.s1.kafka.bootstrap.server = 192.168.131.200:9092
a1.sources.s1.topics = test01
a1.sources.s1.kafka.consumer.groupid = first_test
a1.sources.s1.kafka.consumer.auto.offset.reset = earliest

a1.channels.c1.type = file 
a1.channels.c1.checkpointDir = /opt/software/flume190/mydata/checkpoint05
a1.channels.c1.file.dataDirs = /opt/software/flume190/mydata/data
a1.channels.c1.capaticy = 1000
a1.channels.c1.transactionCapacity = 10

a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = /kafka_flume/log/%Y-%m-%d
a1.sinks.k1.hdfs.filePrefix = log-
a1.sinks.k1.hdfs.round = true
a1.sinks.k1.hdfs.roundValue = 10
sinks.k1.hdfs.roundUnit = minute

a1.sources.s1.channels = c1
a1.sinks.k1.channel = c1

启动flume消费者

flume-ng agent -n a1 -c conf/ -f /root/flume/kafka_flume01.conf -Dflume.root.logger=INFO,console

启动flume生产者

flume-ng agent -n a1 -c conf/ -f /root/flume/flume_kafka02.conf -Dflume.root.logger=INFO,console

启动控制台kafka消费者

kafka-console-consumer.sh --bootstrap-server test:9092 --from-beginning --topic kb12_01 --property print.key=true --key-deserializer org.apache.kafka.common.serialization.LongDeserializer --value-deserializer org.apache.kafka.common.serialization.StringDeserializer

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/152384.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • matlab的fread函数的用法_matlab fread 大小端

    matlab的fread函数的用法_matlab fread 大小端fread函数常见用法:1、A=fread(fileID,sizeA,precision,skip,machinefmt) 2、A=fread(fileID)3、fread(fileID,sizeA)4、A=fread(fileID,sizeA,precision)5、A=fread(fileID,sizeA,precision,skip)6、A=fread(fileID,sizeA,p

    2022年9月13日
    0
  • ResNet解析_restnet

    ResNet解析_restnetResNet在2015年被提出,在ImageNet比赛classification任务上获得第一名,因为它“简单与实用”并存,之后很多方法都建立在ResNet50或者ResNet101的基础上完成的,检测,分割,识别等领域都纷纷使用ResNet,Alphazero也使用了ResNet,所以可见ResNet确实很好用。下面我们从实用的角度去看看ResNet。1.ResNet意义随着…

    2022年10月7日
    0
  • 图论完备之旅

    图论完备之旅

    2021年11月15日
    48
  • 聚类分析的常用算法_聚类算法的基本原理

    聚类分析的常用算法_聚类算法的基本原理原博文:聚类是一种机器学习技术,它涉及到数据点的分组。给定一组数据点,我们可以使用聚类算法将每个数据点划分为一个特定的组。理论上,同一组中的数据点应该具有相似的属性和/或特征,而不同组中的数据点应该具有高度不同的属性和/或特征。聚类是一种无监督学习的方法,是许多领域中常用的统计数据分析技术。在数据科学中,我们可以使用聚类分析从我们的数据中获得一些有价值的见解。在这篇文章中,我们将研究5种流…

    2022年8月29日
    1
  • 自然语言处理真实项目实战(20170822)

    自然语言处理真实项目实战(20170822)

    2022年3月6日
    42
  • 【超详细教程】Mac如何用QuickTime录屏soundflower录制屏内外声音(附视频演示教程)

    【超详细教程】Mac如何用QuickTime录屏soundflower录制屏内外声音(附视频演示教程)作者:齐木南子酱链接:http://www.i5seo.com/mac-own-software-recording-screen.html来源:长沙SEO霜天如何用mac自带软件录屏且录制屏内屏外声音?这个问题困扰了很多使用苹果mac笔记本的用户,本教程你能get到的3个技能点1.用macbook自带软件录屏(无屏内屏外声音)2.用macbook自带软件录屏+有屏内声音+…

    2022年6月8日
    45

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号