PyTorch中torchvision介绍[通俗易懂]

PyTorch中torchvision介绍[通俗易懂]TorchVision包包含流行的数据集、模型架构和用于计算机视觉的图像转换,它是PyTorch项目的一部分。TorchVison最新发布版本为v0.11.1,发布较频繁,它的license为BSD-3-Clause。它的源码位于:https://github.com/pytorch/visionTorchVision由C++(CUDA)和Python3实现,依赖Torch、PNG、JPEG,还依赖PIL(Pillow,PythonImagingLibrary)。推荐…

大家好,又见面了,我是你们的朋友全栈君。

      TorchVision包包含流行的数据集、模型架构和用于计算机视觉的图像转换,它是PyTorch项目的一部分。TorchVison最新发布版本为v0.11.1,发布较频繁,它的license为BSD-3-Clause。它的源码位于:
 https://github.com/pytorch/vision 

      TorchVision由C++(CUDA)和Python3实现,依赖Torch、PNG、JPEG,还依赖PIL(Pillow, Python Imaging Library)。推荐使用Anaconda安装 ,安装时注意对Python和Torch有版本要求。对应TorchVison 0.11.1,Torch版本要求为1.10.0,Python要求为[3.6, 3.9]。通过Anaconda安装TorchVison 0.11.1执行如下命令:

conda create -n torchvision_0.11.1 python=3.8
conda activate torchvision_0.11.1
conda install torchvision==0.11.1 -c pytorch

      TorchVision也对外提供C++接口,通过CMakeLists.txt生成动态库。

      TorchVision功能:

      (1).torchvision.datasets包支持下载/加载的数据集有几十种,如CIFAR、COCO、MNIST等,所有的数据集都有相似的API加载方式。每种数据集在datasets包中都对应一个.py文件,如CIFAR对应有cifar.py。

      (2).torchvision.io包提供执行IO操作函数,用于读写视频和图像。

      (3).torchvision.models包提供各种模型定义,包括图像分类如AlexNet、VGG等;对象检测如Faster R-CNN、Mask R-CNN等;分割、关键点检测等。

      (4).torchvision.ops包实现特定于计算机视觉的操作,如RoI(Region of Interest) Align、RoI(Region of Interest) Pool等。

      (5).torchvision.transforms包实现图像变换。大多数转换同时接受PIL图像和tensor图像,尽管有些转换仅适用于PIL,有些则仅适用于tensor。接受tensor图像的转换也接受批量的tensor图像。tensor图像是具有(C, H, W)形状的tensor,其中C是通道数,H和W是图像的高度和宽度。批量tensor图像是一个(B, C, H, W)形状的tensor,其中B是一批图像的数量。tensor图像的预期范围由tensor dtype隐式定义。具有float dtype的tensor图像的值应为[0, 1)。具有整数dtype的tensor图像应具有[0, MAX_DTYPE],其中MAX_DTYPE是该dtype中可以表示的最大值。

      以下为测试代码:

from torchvision import datasets
from torchvision import io
from torchvision import models
from torchvision import ops
from torchvision import transforms

import torch

# 下载MNIST数据集: torchvision.datasets包
test = datasets.MNIST("../../data", train=False, download=True)
train = datasets.MNIST("../../data", train=True, download=False)
print(f"raw_folder: test: {test.raw_folder}, train: {train.raw_folder}")
print(f"processed_folder: test: {test.processed_folder}, train: {train.processed_folder}")
print(f"extra_repr:\ntest: {test.extra_repr}\ntrain: {train.extra_repr}")
print(f"class to index: {test.class_to_idx}")

# 读写图像: torchvision.io包
tensor = io.read_image("../../data/image/1.jpg")
print("tensor shape:", tensor.shape)
io.write_png(tensor, "../../data/image/result.png")

tensor = io.read_image("../../data/image/lena.png")
print("tensor shape:", tensor.shape)
io.write_jpeg(tensor, "../../data/image/result.jpg")

# 下载pre-trained AlexNet模型: torchvision.models包
net = models.alexnet(pretrained=True)

# 计算机视觉操作: torchvision.ops包
boxes = torch.tensor([[1, 1, 101, 101], [3, 5, 13, 15], [2, 4, 22, 44]])
area = ops.box_area(boxes)
print(f"area: {area}")

index = ops.remove_small_boxes(boxes, min_size=20)
print(f"index: {index}")

# 图像变换: torchvision.transforms包
resize = transforms.Resize(size=[256, 128])
img = resize.forward(tensor)
io.write_jpeg(img, "../../data/image/resize.jpg")

grayscale = transforms.Grayscale()
img2 = grayscale.forward(img)
io.write_jpeg(img2, "../../data/image/gray.jpg")

affine = transforms.RandomAffine(degrees=35)
img3 = affine.forward(tensor)
io.write_jpeg(img3, "../../data/image/affine.jpg")

crop = transforms.CenterCrop(size=[128, 128])
img4 = crop.forward(tensor)
io.write_jpeg(img4, "../../data/image/crop.jpg")

      GitHubhttps://github.com/fengbingchun/PyTorch_Test

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/152616.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 在 Visual Studio 中配置 Eigen库

    在 Visual Studio 中配置 Eigen库VisualStudio配置Eigen库

    2022年8月31日
    2
  • maven学习系列——(五)maven聚合与继承[通俗易懂]

    这一篇学习和整理maven的聚合和继承! 并用具体的项目讲解说明!

    2022年2月25日
    32
  • mysql1142_转: MySQL5.7 ERROR 1142 (42000)问题[通俗易懂]

    mysql1142_转: MySQL5.7 ERROR 1142 (42000)问题[通俗易懂]1,mysql全库导入报错[root@dev_121_21~]#mysql–socket=/usr/local/mysql/mysql.sock–default-character-set=utf8ERROR1142(42000)atline266079:SELECT,LOCKTABLEScommanddeniedtouser’root’@’localhost’…

    2022年10月1日
    0
  • MySQL之字符串拼接[通俗易懂]

    MySQL之字符串拼接[通俗易懂]MySQL字符串拼接及分组字符串拼接涉及:concat,concat_ws,group_concat数据准备:CREATETABLE`app`(`app_id`intDEFAULT’0′,`version_code`intDEFAULT’0′,`download_count`intDEFAULT’0′)ENGINE=InnoDBDEFAULTCHARSET=utf8mb4COLLATE=utf8mb4_0900_ai_ci;INSER..

    2022年9月30日
    0
  • 协方差矩阵计算实例「建议收藏」

    协方差矩阵计算实例「建议收藏」协方差矩阵计算实例突然发现给一组数据去实际计算对应得协方差矩阵,让人有点懵,并未找到太清楚的讲解,这里举一个实例记录一下。1、别把样本数和维度数搞混了具体进行计算容易懵的原因就是很容易把样本数和维度数搞混,维度数n,那么得到的协方差矩阵就是n*n的,和样本数没啥关系。这里还是要明确一下,维度数即是每条样本中的变量数,协方差即是对不同变量的同向程度进行的衡量,下面举个例子来具体说明一下。2、实例说明一下样本:一共4条,2维的这里再强调一下,每条样本都是2维的,即每条样本都包含对两个变量

    2022年6月28日
    26
  • 2020年3月25日阿里笔试题

    2020年3月25日阿里笔试题2020年3月25日阿里笔试题题目描述一python代码题目描述二求公差的python代码  仿佛人生总有一种魔咒,自己做的这场笔试题永远是最难的。不过今天的笔试题,真的难。来看题目。题目描述一给定一个数组n,然后给三个长度为n的数组,可以从这三个数组中选出一个长度为n的数组,第i个位置需要是从给出的三个数组第i个位置选择的,然后要求使这个数组后一项减前一项的绝对值之和最小。输入示例::…

    2022年5月24日
    35

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号