单调队列优化的背包问题[通俗易懂]

单调队列优化的背包问题[通俗易懂]对于背包问题,经典的背包九讲已经讲的很明白了,本来就不打算写这方面问题了。但是吧。我发现,那个最出名的九讲竟然没写队列优化的背包。。。。那我必须写一下咯嘿嘿,这么好的思想。我们回顾一下背包问题吧。01背包问题题目有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总…

大家好,又见面了,我是你们的朋友全栈君。

对于背包问题,经典的背包九讲已经讲的很明白了,本来就不打算写这方面问题了。

但是吧。

我发现,那个最出名的九讲竟然没写队列优化的背包。。。。

那我必须写一下咯嘿嘿,这么好的思想。

 

我们回顾一下背包问题吧。

 

01背包问题 

题目 
有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。 

这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。 

f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:

f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}。 

就是说,对于本物品,我们选择拿或不拿

比如费用是3.

相关图解:

单调队列优化的背包问题[通俗易懂]

我们求表格中黄色部分,只和两个黑色部分有关

拿了,背包容量减少,我们价值加上减少后最大价值。

不拿,最大价值等于没有这件物品,背包不变,的最大价值。

完全背包问题 

题目 
有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。 

基本思路 
这个问题非常类似于01背包问题,所不同的是每种物品有无限件。

f[i][v]=max{f[i-1][v],f[i][v-c[i]]+w[i]}

图解:

单调队列优化的背包问题[通俗易懂]

因为我们拿了本物品还可以继续拿无限件,对于当前物品,无论之前拿没拿,还可以继续拿,所以是f[i][v-c[i]]+w[i]

 

换一个角度说明这个问题为什么可以f[i][v-c[i]]+w[i],也就是同一排。

单调队列优化的背包问题[通俗易懂]

其实是这样的,我们对于黄色部分,也就是当前物品,有很多种选择,可以拿一个,两个。。。一直到背包容量不够了。

也就是说,可以不拿,也就是J1,可以拿一个,也就是G1+w[i],也可以拿两个,也就是D1+2w[i],拿三个,A1+3w[i]。

但是我们看G2,G2其实已经是之前的最大了:A1+2w[i],D1+w[i],G1他们中最大的,对么?

既然G2是他们中最大的。

我们怎么求J2?

是不是只要求G2+w[i]和J1的最大值就好了。

因为G2把剩下的情况都保存好了。

 

多重背包问题 (正文)

题目 
有N种物品和一个容量为V的背包。第i种物品最多有n[i]件可用,每件费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。 

 

和之前的完全背包不同,这次,每件物品有最多拿n[i]件的限制。

思路一:我们可以把物品全都看成01背包:比如第i件,我们把它拆成n[i]件一样的单独物品即可。

思路二:思路一时间复杂度太高。利用二进制思路:一个n位二进制,能表示2^n种状态,如果这些状态就是拿了多少物品,我们可以把每一位代表的数都拿出来,比如n[i]=16,我们把它拆成1,2,4,8,1,每一堆物品看成一个单独物品。

为什么最后有个一?因为从0到16有十七种状态,四位不足以表示。我们最后补上第五位1.

把拆出来的物品按01背包做即可。

思路三:我们可以利用单调队列:

https://blog.csdn.net/hebtu666/article/details/82720880

单调队列优化的背包问题[通俗易懂]

再回想完全背包:为什么可以那么做?因为每件物品能拿无限件。所以可以。而多重背包因为有了最多拿多少的限制,我们就不敢直接从G2中拿数,因为G2可能是拿满了本物品以后才达到的状态 。

比如n[i]=2,如果G2的状态是2w[i],拿了两个2物品达到最大值,我们的J2就不能再拿本物品了。

如何解决这个问题?就是我给的网址中的,双端单调队列

利用窗口最大值的思想。

大家想想怎么实现再看下文。

 

发现问题了吗?

单调队列优化的背包问题[通俗易懂]

我们求出J2以后,按原来的做法,是该求K2的,但是K2所需要的信息和J2完全不同,红色才是K2可能需要的信息。

所以我们以物品重量为差,先把黑色系列推出来,再推红色系列,依此类推。

这个例子就是推三次,每组各元素之间差3.

这样就不会出现构造一堆单调队列的尴尬情况了。

在代码中继续详细解释:

//输入
int n;
int W;
int w[MAX_N];
int v[MAX_N];
int m[MAX_N];

 

int dp[MAX_N+1];//压空间,本知识参考https://blog.csdn.net/hebtu666/article/details/79964233
int deq[MAX_N+1];//双端队列,保存下标
int deqv[MAX_N+1];//双端队列,保存值

队列存的就是所有上一行能取到的范围,比如对于J2,队列里存的就是G1-w[i],D1-2w[i],A1-3w[i]等等合法情况。(为了操作方便都是j,利用差实现最终的运算)

他们之中最大的就是队头,加上最多存储个数就好。

 

 

单调队列优化的背包问题[通俗易懂]

 

void solve()
{
    for(int i=0;i<n;i++)//参考过那个网址第二题应该懂
    {
        for(int a=0;a<w[i];a++)//把每个分组都打一遍
        {
            int s=0;//初始化双端队列头尾
            int t=0;
            for(int j=0;j*w[i]+a<=W;j++)//每组第j个元素
            {
                int val=dp[j*w[i]+a]-j*v[i];
                while(s<t && deqv[t-1]<=val)//直到不改变单调性
                    t--;
                deq[t]=j;
                deqv[t]=val;
                t++;
                //利用队头求出dp
                dp[j*w[i]+a]=deqv[s]+j*v[i];
                if(deq[s]==j-m[i])s++;//检查过期
            }
        }
    }
}

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/152966.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • OpenCV人脸识别的原理 .

    OpenCV人脸识别的原理 .在之前讲到的人脸测试后,提取出人脸来,并且保存下来,以供训练或识别是用,提取人脸的代码如下:voidGetImageRect(IplImage*orgImage,CvRectrectInImage,IplImage*imgRect,doublescale){ //从图像orgImage中提取一块(rectInImage)子图像imgRect IplImage*res

    2022年5月9日
    42
  • 事务隔离级别与锁的对应关系_速度级别H和速度级别S

    事务隔离级别与锁的对应关系_速度级别H和速度级别S隔离级别org.springframework.transaction.annotation.Isolationpublic enum Isolation { DEFAULT(-1), READ_UNCOMMITTED(1), READ_COMMITTED(2), REPEATABLE_READ(4), SERIALIZABLE(8);}DEFAULT :这是默认值,表示使用底层数据库的默认隔离级别。对大部分数据库而言,通常这值就是: READ_CO..

    2022年8月8日
    7
  • c语言处理excel表格_c语言一般文件的处理过程

    c语言处理excel表格_c语言一般文件的处理过程1写excel是.csv后缀,跳跃间隔符是‘\t’ FILE*fp; fp=fopen(“./test.csv”,”w”);//写 for(i=0;i<4;i++) fprintf(fp,”%c,%d,%d\n”,chy[i],data[i],d2); fclose(fp);2读指定位置读数,如倒序读数,从末尾向前读数!先看代码!倒序读最后一行的数据#include<bits/stdc++.h>#define

    2022年8月30日
    4
  • HTTP.UTF_8过时

    HTTP.UTF_8过时

    2021年5月16日
    156
  • STM32独立看门狗

    STM32独立看门狗参考正点原子视频看门狗在由单片机构成的微型计算机系统中,由于单片机的工作常常会受到来自外界电磁场的干扰,造成程序的跑飞,而陷入死循环,程序的正常运行被打断,由单片机控制的系统无法继续工作,会造成整个系统的陷入停滞状态,发生不可预料的后果,所以出于对单片机运行状态进行实时监测的考虑,便产生了一种专门用于监测单片机程序运行状态的模块或者芯片,俗称:看门狗看门狗的意义在启动正常运行的时候,系统不能复位在系统跑飞(程序异常执行)的情况,系统复位,程序重新执行独立看门狗(IWDG)由专用的低速时钟(L

    2022年5月24日
    44
  • SqlSugar ORM 入门篇2 【查询】 让我们实现零SQL「建议收藏」

    SqlSugar ORM 入门篇2 【查询】 让我们实现零SQL「建议收藏」SqlSugar在查询的功能是非常强大的,多表查询、分页查询、一对一查询、二级缓存、一对多查、WhenCase等复杂函数、Mapper功能、和拉姆达自定义扩展等,用好了是可以做到真正零SQL的一款

    2022年8月4日
    7

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号