组合数公式

组合数公式排列组合:排列推导:\(\binom{n}{k}+\binom{n}{k-1}=\binom{n+1}{k}\)很好证明,将定义式子写出来后合并分数即可.二项式定理:\((a+b)^n=\s

大家好,又见面了,我是你们的朋友全栈君。

排列组合:

排列推导:

\[\binom{n}{k}+\binom{n}{k-1}=\binom{n+1}{k} \]

很好证明,将定义式子写出来后合并分数即可.

二项式定理:

\[(a+b)^n=\sum_{i=0}^n\binom{n}{i}a^{n-i}b^i \]

证明可以利用上面的推导做归纳。

多重集的排列数

定义:

多重集是包含重复元素的广义集合。

而多重集的排列数又称为 多重组合数

性质:

\(S=\{n_1\cdot a_1,n_2\cdot a_2,\cdots,n_k\cdot a_k,\}\),表示由 \(n_1\)\(a_1\) …. \(n_k\)\(a_k\) 组成的多重集,则 \(S\) 的全排列个数为:

\[\frac{n!}{\prod_{i=1}^kn_i!}=\frac{n!}{n_1!n_2!\cdots n_k!} \]

相当于是把相同元素的排列数除掉了。

具体来说,有 \(k\) 种不一样的球,每种球的个数分别是 \(n_1,n_2,….,n_k\) ,且加和为 \(n\)

\(n\) 个球的全排列数就是 多重集的排列数

多重集的组合数 \(1\)

\(S=\{n_1\cdot a_1,n_2\cdot a_2,\cdots,n_k\cdot a_k,\}\),表示由 \(n_1\)\(a_1\) …. \(n_k\)\(a_k\) 组成的多重集。

那么对于整数 \(r(r < n_i)\) ,从 \(S\) 中选择 \(r\) 个元素组成一个多重集的方案数就是 多重集的组合数

这个问题等价于 :\(x_1+x_2+…+x_k=r\) 的非整数解的数目,可以用插板法解决。答案为:

\[\binom{r+k-1}{k-1} \]

证明:

因为在这种情况下, \(x_{[1,k]}\) 的数可能为 \(0\) ,我们把每一个 \(x+1\) ,得到了这个式子:

\[x_1+x_2+…+x_k=r+k \]

代换意义就是用 \(k-1\) 个挡板,在 \(k+r-1\) 个空隙,将 \(k+r\) 个小球分成 \(k\) 部分。即以上式子。

多重集的组合数 \(2\):

\(S=\{n_1\cdot a_1,n_2\cdot a_2,\cdots,n_k\cdot a_k,\}\),表示由 \(n_1\)\(a_1\) …. \(n_k\)\(a_k\) 组成的多重集。

对于正整数 \(r(r < n)\) , 求从 \(S\) 中选择 \(r\) 个元素组成一个多重集的方案数.

这样的话就限制了每种元素取的个数,把这个问题转化成带限制的线性方程:

\[\forall i\in [1,k],\ x_i\le n_i,\ \sum_{i=1}^kx_i=r \]

我们利用容斥原理去解决,模型如下:

  1. 全集:\(\sum_{i=1}^k x_i=r\) 的非负整数解

  2. 属性:\(x_i\leq n_i\)

设 满足属性 \(i\) 的集合是 \(S_i\)\(\overline{S_i}\) 表示不满足属性 \(i\) 的集合,即满足 \(x_i \geq n_i+1\) 的集合,那么答案即为:

\[\left|\bigcap_{i=1}^kS_i\right|=|U|-\left|\bigcup_{i=1}^k\overline{S_i}\right| \]

根据容斥原理。。。。。 具体在 \(OI-WIKI\) 上都有。

用全集 \(|U|=\binom{r+k-1}{k-1}\) 减去上面式子,得到了多重集的组合数:

\[Ans=\sum_{p=0}^k(-1)^p\sum_{A}\binom{k+r-1-\sum_{A} n_{A_i}-p}{k-1} \]

其中 \(A\) 是充当枚举子集的作用,满足 \(|A|=p, A_i<A_{i+1}\)

不相邻的排列:

定义:

\([1,n]\)\(n\) 个自然数中选 \(k\) 个,这 \(k\) 个数中任何两个数都不相邻的组合有:

\[\binom{n-k+1}{k} \]

错排:

详情见我另外一篇博客:错排

圆排列:

定义:

\(n\) 个人全部来围成一圈,所有的排列数即为 \(Q_n^n\)

分析:

考虑其中已经排好的一圈,从不同位置断开,又变成不同的序列,所以有以下推导:

\[Q_n^n \times n= A_n^n \rightarrow Q_n^n=\frac{A_n^n}{n}=(n-1)! \]

从这里能推导出 \(n\) 个人其中 \(m\) 个围成一圈的方案数:

\[\mathrm Q_n^r = \frac{\mathrm A_n^r}{r} = \frac{n!}{r \times (n-r)!} \]

组合数性质:

1. 将选出的集合对全集取补集:

\[\binom{n}{m}=\binom{n}{n-m}\tag{1} \]

2. 递推式:

\[\binom{n}{k}=\frac{n}{k}\binom{n-1}{k-1} \]

3. 组合数递推式(和上方相同)

\[\binom{n}{m}=\binom{n-1}{m}+\binom{n-1}{m-1} \]

然后一开始初始化是这样的:

c[1][1]=1; for(int i=0;i<=n;i++) c[i][0]=1;
for(int i=2;i<=n;i++)
    for(int j=1;j<=i;j++){
        c[i][j]=c[i-1][j]+c[i-1][j-1];
    }

这个式子是杨辉三角的公式表达。

4. 二项式定理特殊情况:

\[\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{n}=\sum_{i=0}^n\binom{n}{i}=2^n\tag{4} \]

5. 二项式定理另一种情况:

\[\sum_{i=0}^n(-1)^i\binom{n}{i}=[n=0]\tag{5} \]

6. 拆组合数:

\[\sum_{i=0}^m\binom{n}{i}\binom{m}{m-i}=\binom{m+n}{m} (n\geq m) \]

\(m=n\) 的时候,则有式子:

\[\sum_{i=0}^n \binom{n}{i}^2=\binom{2n}{n} \]

剩下的看 OI-WIKI 好了.

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/154644.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • DLL注入之使用SetWindowsHookEx注入「建议收藏」

    DLL注入之使用SetWindowsHookEx注入「建议收藏」原理分析:本次介绍的是使用全局钩子的方式进行注入。在Windows中可以使用SetWindowsHookEx来设置消息钩子,这个函数除了可以设置当前进程的钩子之外,它还可以设置全局钩子。全局钩子,顾名思义,即当前正在运行的进程都会被设置相应的钩子。//dwThreadId设置为0,则是全局钩子。HHOOKSetWindowsHookExA(intidHook,…

    2022年5月13日
    40
  • 软件工厂简介「建议收藏」

    软件工厂简介「建议收藏」摘要:简要介绍Microsoft开发软件工厂这种方法的动机。所谓软件工厂就是指为了支持某种特定应用程序的快速开发而配置的开发环境。软件工厂从逻辑上讲就是软件开发方法和实践的下一个发展阶段。然而,通过引入产业化模式,软件工厂势必会改变软件行业的现状。扩大软件开发的规模从目前的情况来看,软件开发的速度缓慢、代价高昂而又极易出错,常常会生产出存在大量缺陷的产品,在可用性、可靠性、性能、安全

    2022年9月3日
    4
  • CSS 改变鼠标样式(大全)[通俗易懂]

    CSS 改变鼠标样式(大全)[通俗易懂]前端经常会用到改变鼠标的样式来达到更好的页面效果,比如经常会使用到改变成小手,拖拽时改变成移动拖拽的鼠标样式,可每次都需要查阅资料来完成代码,在此做下详细总结:使用方法:<spanstyle=”cursor:auto”>Auto</span><spanstyle=”cursor:crosshair”>Crosshair</span><spanstyle=”cursor:default”>Default&..

    2022年5月31日
    151
  • Layui弹出层 加载 做编辑页面「建议收藏」

    Layui弹出层 加载 做编辑页面「建议收藏」先上效果图基本准备,引入layui的layui.css,layui.js文件&lt;linkrel="stylesheet"href="../../../Publics/others/layui/css/layui.css"media="all"&gt;&lt;scriptsrc="../../../Publics/others/layui/layui.js"&gt;&a

    2022年5月26日
    66
  • mysql语句和sql语句的区别_oracle和sqlserver的语法区别

    mysql语句和sql语句的区别_oracle和sqlserver的语法区别sql和mysql语法的区别有:mysql支持enum和set类型,sql不支持,mysql需要为表指定存储类型,mysqlL中text字段类型不允许有默认值,sql允许有等等方面都存在差异MySQL与SQLServer的语法区别1、MySQL支持enum,和set类型,SQLServer不支持2、MySQL不支持nchar,nvarchar,ntext类型3、MySQL的递增语句是AUTO_I…

    2022年10月2日
    0
  • clion永久激活码[最新免费获取]

    (clion永久激活码)好多小伙伴总是说激活码老是失效,太麻烦,关注/收藏全栈君太难教程,2021永久激活的方法等着你。https://javaforall.net/100143.htmlIntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,上面是详细链接哦~6EK6WKOHUX-eyJsaWNlbnNlSWQiOi…

    2022年3月28日
    57

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号