浅谈WeakHashMap

浅谈WeakHashMapJavaWeakHashMap到底Weak在哪里,它真的很弱吗?WeakHashMap的适用场景是什么,使用时需要注意些什么?弱引用和强引用对JavaGC有什么不同影响?本文将给出清晰而简洁

大家好,又见面了,我是你们的朋友全栈君。

Java WeakHashMap 到底Weak在哪里,它真的很弱吗?WeakHashMap 的适用场景是什么,使用时需要注意些什么?弱引用和强引用对Java GC有什么不同影响?本文将给出清晰而简洁的介绍。

总体介绍

在Java集合框架系列文章的最后,笔者打算介绍一个特殊的成员:WeakHashMap,从名字可以看出它是某种 Map。它的特殊之处在于 WeakHashMap 里的entry可能会被GC自动删除,即使程序员没有调用remove()或者clear()方法。

更直观的说,当使用 WeakHashMap 时,即使没有显示的添加或删除任何元素,也可能发生如下情况:

  • 调用两次size()方法返回不同的值;
  • 两次调用isEmpty()方法,第一次返回false,第二次返回true
  • 两次调用containsKey()方法,第一次返回true,第二次返回false,尽管两次使用的是同一个key
  • 两次调用get()方法,第一次返回一个value,第二次返回null,尽管两次使用的是同一个对象。

遇到这么奇葩的现象,你是不是觉得使用者一定会疯掉?其实不然,WeekHashMap 的这个特点特别适用于需要缓存的场景。在缓存场景下,由于内存是有限的,不能缓存所有对象;对象缓存命中可以提高系统效率,但缓存MISS也不会造成错误,因为可以通过计算重新得到。

要明白 WeekHashMap 的工作原理,还需要引入一个概念:弱引用(WeakReference)。我们都知道Java中内存是通过GC自动管理的,GC会在程序运行过程中自动判断哪些对象是可以被回收的,并在合适的时机进行内存释放。GC判断某个对象是否可被回收的依据是,是否有有效的引用指向该对象。如果没有有效引用指向该对象(基本意味着不存在访问该对象的方式),那么该对象就是可回收的。这里的“有效引用”并不包括弱引用。也就是说,虽然弱引用可以用来访问对象,但进行垃圾回收时弱引用并不会被考虑在内,仅有弱引用指向的对象仍然会被GC回收

WeakHashMap 内部是通过弱引用来管理entry的,弱引用的特性对应到 WeakHashMap 上意味着什么呢?将一对key, value放入到 WeakHashMap 里并不能避免该key值被GC回收,除非在 WeakHashMap 之外还有对该key的强引用

关于强引用,弱引用等概念以后再具体讲解,这里只需要知道Java中引用也是分种类的,并且不同种类的引用对GC的影响不同就够了。

具体实现

WeakHashMap的存储结构类似于HashMap,读者可自行参考前文,这里不再赘述。

关于强弱引用的管理方式,博主将会另开专题单独讲解。

Weak HashSet?

如果你看过前几篇关于 MapSet 的讲解,一定会问:既然有 WeekHashMap,是否有 WeekHashSet 呢?答案是没有:( 。不过Java Collections工具类给出了解决方案,Collections.newSetFromMap(Map<E,Boolean> map)方法可以将任何 Map包装成一个Set。通过如下方式可以快速得到一个 Weak HashSet

// 将WeakHashMap包装成一个Set
Set<Object> weakHashSet = Collections.newSetFromMap(
        new WeakHashMap<Object, Boolean>());

不出你所料,newSetFromMap()方法只是对传入的 Map做了简单包装:

// Collections.newSetFromMap()用于将任何Map包装成一个Set
public static <E> Set<E> newSetFromMap(Map<E, Boolean> map) {
    return new SetFromMap<>(map);
}

private static class SetFromMap<E> extends AbstractSet<E>
    implements Set<E>, Serializable
{
    private final Map<E, Boolean> m;  // The backing map
    private transient Set<E> s;       // Its keySet
    SetFromMap(Map<E, Boolean> map) {
        if (!map.isEmpty())
            throw new IllegalArgumentException("Map is non-empty");
        m = map;
        s = map.keySet();
    }
    public void clear()               {        m.clear(); }
    public int size()                 { return m.size(); }
    public boolean isEmpty()          { return m.isEmpty(); }
    public boolean contains(Object o) { return m.containsKey(o); }
    public boolean remove(Object o)   { return m.remove(o) != null; }
    public boolean add(E e) { return m.put(e, Boolean.TRUE) == null; }
    public Iterator<E> iterator()     { return s.iterator(); }
    public Object[] toArray()         { return s.toArray(); }
    public <T> T[] toArray(T[] a)     { return s.toArray(a); }
    public String toString()          { return s.toString(); }
    public int hashCode()             { return s.hashCode(); }
    public boolean equals(Object o)   { return o == this || s.equals(o); }
    public boolean containsAll(Collection<?> c) {return s.containsAll(c);}
    public boolean removeAll(Collection<?> c)   {return s.removeAll(c);}
    public boolean retainAll(Collection<?> c)   {return s.retainAll(c);}
    // addAll is the only inherited implementation
    ......
}

结语

至此深入Java集合框架(Java Collections Framework Internals)系列已经全部讲解完毕,希望这几篇简短的博文能够帮助各位读者对Java容器框架建立基本的理解。通过这里可以返回本系列文章目录

如果对各位有哪怕些微的帮助,博主将感到非常高兴!如果博文中有任何的纰漏和谬误,欢迎各位博友指正。

本文GitHub地址

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/155341.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Oracle cursor_sharing 参数 详解

    Oracle cursor_sharing 参数 详解

    2022年2月22日
    45
  • 频率之外谁重要?计算机存储系统解析(转载)

    频率之外谁重要?计算机存储系统解析(转载)

    2021年9月2日
    48
  • matlab将两幅图进行融合_matlab拟合三维曲面

    matlab将两幅图进行融合_matlab拟合三维曲面matlab图像融合        [r,c]=size(y1);            %根据低频融合算法进行图像融合fori=1:r            %首先取两幅源图像相应的小波分解系数绝对值最大者的值作为融合图像的分解系数    forj=1:c        if(abs(y1(i,j))>=abs(y2(i,j)))            y3(

    2025年6月17日
    4
  • 深度残差网络(ResNet)之ResNet34的实现和个人浅见[通俗易懂]

    深度残差网络(ResNet)之ResNet34的实现和个人浅见[通俗易懂]残差网络是由来自MicrosoftResearch的4位学者提出的卷积神经网络,在2015年的ImageNet大规模视觉识别竞赛(ImageNetLargeScaleVisualRecognitionChallenge,ILSVRC)中获得了图像分类和物体识别的优胜。**残差网络的特点是容易优化,并且能够通过增加相当的深度来提高准确率。其内部的残差块使用了跳跃连接(shortcut),缓解了在深度神经网络中增加深度带来的梯度消失问题**。残差网络(ResNet)的网络结构图举例如下:

    2022年10月6日
    3
  • STM32与S3C2440的区别

    STM32与S3C2440的区别在学习嵌入式的路上,我们可能会接触到这两个比较典型的MCU。其中最大的区别就是S3C2440能跑linux操作系统,常常作为学习嵌入式linux的硬件平台。可能大家会问既然S3C2440能跑linux操作系统,似乎比stm32厉害多了,为什么不直接去学习S3C2440呢?下面我就大概解释一下大家遇到的困惑:1.先来说说stm32stm32是ST公司推出的基于Cortex-M3内核的

    2022年4月30日
    61
  • 整理:数据库设计的六个阶段详解

    整理:数据库设计的六个阶段详解按照规范设计,我们将数据库的设计过程分为六个阶段:1、系统需求分析阶段;2、概念结构设计阶段;3、逻辑结构设计阶段;4、物理结构设计阶段;5、数据库实施阶段;6、数据库运行与维护阶段;每个阶段的详细解析如下:(资料来自:数据库设计(百度文库))一、系统需求分析阶段1、需求分析的任务2、需求分析的两种方法:自顶向下和自底向上二、概念结构设计三、逻辑结构设计

    2025年6月6日
    5

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号